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AS-Unit-1-Mechanics 

Module 1: Motion 

Chapter 1 Physical quantities and units 

1-1 Units 

1-1-1 Physical quantities and SI units 

In general, a physical quantity is made up of two parts: numerical magnitude 

+ unit. 

For example, the distance from school to your home is 1000 m. then 1000 is 

the numerical magnitude and m (meter) is its unit. 

(i) SI Units 

There are seven SI Units shown in table 1.1: 

Table 1.1 SI Units 
SI Units 

Base quantity 
Name Symbol 

Mass Kilogram kg 

Length Meter m 

Time Second s 

Thermodynamic temperature Kelvin K 

Electric current Ampere A 

Amount of substance Mole mol 

Luminous intensity candela cd 

Other units are derived from these: (table 1.2) 

Table 1.2 Examples of SI derived Units 
Physical quantity Defining equation Derived unit Special symbol 

Speed Distance × time 1m s  -- 

Acceleration Speed/time 2m s  -- 

Force mass×acceleration 2kg m s   N(Newton) 

Work force×distance N m  J(joule) 

Density Mass/volume 3kg m  -- 

Charge current×time A s  C(coulomb) 

Pressure Force/area 2N m  Pa(Pascal) 

Resistance Voltage/current 1V A   (ohm) 

voltage Energy/charge 1J C  V(volt) 

 

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 



1-1-2 Prefixes 

Prefixes can be added to SI and derived units to make larger or smaller units 

as shown in table 1.3: 

Table 1.3 Prefixes 
Value prefix symbol Value prefix symbol 

2410  yotta Y 110  deci d 
2110  zeta Z 210  centi c 
1810  exa E 310  milli m 
1510  peta P 610  micro μ 
1210  tera T 910  nano n 
910  giga G 1210  pico p 
610  mega M 1510  femto f 
310  kilo k 1810  atto a 
210  hecto h 2110  zepto z 
110  deka da 2410  yocto y 

 

For example: 

1 kilometer = 1 km = 103 m 

1 microgram = 1 μg = 10-6 g 

1 mega meter = 1 M m = 106 m 

1 millimeter = 1 m m = 10-3 m 

 

1-2 1 Worked examples 

1. A volume is measured to be 25 mm3, express the volume in m3. 

Solution: 
31 10mm m , thus 

   33 3 91 10 10mm m m   3  
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Chapter 2 Scalars and vectors 

2-1 Addition of vectors 

1.1 Definition of scalars and vectors 

Scalar: quantity has direction only. 

Examples of scalar: mass, temperatures, volume, work… 

Vector: quantity both has magnitude and direction  

Examples of vectors: force, acceleration, displacement, velocity, 

momentum… 

Representation of vectors: any vectors can be represented by a straight line 

with an arrow whose length represents the magnitude of the vectors, and the 

direction of the arrow gives the direction of the vectors. 

Vector Notation: use an arrow , ,A S B
  

… 

              Or use the bold letter A, B, S… 

              When considering the magnitude of a vector only, we can 

use the italic letter A, B, S… 

1.2 Addition of vectors: 

When adding vectors, the units of the vectors must be the same, the direction 

must be taken into account. 

Addition Principles:  

ⅰ: if two vectors are in the same direction: the magnitude of the resultant 

vector is equal to the sum of their magnitudes, in the same direction.  

ⅱ: if two vectors are in the opposite direction: the magnitude of the resultant 

vector is equal to the difference of the magnitude of the two vectors and 

is in the direction of the greater vector. 

ⅲ: if two vectors are placed tail-to-tail at an angle , it can also be 

represented as a closed triangle (Fig. 2.1). 


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OA AC OC 
  

OB AC
 

  Because  

OA and OB
 

 are placed tail to tail to form two adjacent sides of a 

parallelogram and the diagonal OC


 gives the sum of the vectorsOA and OB
 

. 

This is also called as ‘parallelogram rule of vector addition. 

 

Addition Methods: 

ds----using scale drawings 

 at right angle, and F1 = 3 N, F2 = 4 N, determine the 

  

(i): Graphical Metho

  For example: 

  F1 and F2 are

resultant force F (Fig. 2.2). 

Let 1cm=1N 

 
Measure the length of the resultant vector, we get length = 5cm, then 

ght angle, and F1 = 3 N, F2 = 4 N, determine the resultant 

resultant force, F = 5 N. 

(ii) Algebraic Methods 

   For example: 

F1 and F2 are at ri

force F (Fig. 2.3). 



 
Using the Pythagorean Theorem: 
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Magnitude of the resultant force, 2 2 2 2
1 2 3 4 5F F F N      

The angle   between F and F1 is given by: 

2tan
F    

1

4

3F

Or  

2 4
sin   

5F

Or  

F  

1 3
cos  

5F

2-2 Resolvin

F
 

  a vector into two perpendicular components g

For example, for a vector OC


,   is known, resolving it horizontally and 

vertically (Fig. 2.4). 



 
Magnitude of Horizontally component cosOA OC   

Magnitude of vertically component OB sinOC   

wo perpendicThus, a force can be resolved into t ular components (Fig. 2.5): 

F and   are known. 
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Fig. 2.5 Resolving a force into two 
perpendicular components

y
F


Fx

Y

X

F

 
cosxF F  sinyF F        

 

2-3  10 Worked examples 

1. Representation of vectors: 

(i) A displacement of 500 m due east 

Represent the displacement:  

 
Let scale:  1 100cm m

Then 

 
Note: of course you can also let scale: 1 250cm m  

Then:  

 
(ii) A force of (or F=100N) due north.  100F 


N

Let scale:  1 50cm N

Then  
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2. Addition of the vectors  

(i) are in the same direction. 

 Magnitude of the resultant 1 2F 1F F N1    

 Direction: the same direction of 1 2F and F
 

1 2F and F
 

 

(ii) are in the opposite direction. 

  Magnitude of the resultant 2 1F 4F F N    

  Direction: the same direction of 2F


1 2F and F
 

 

(iii)  are at right angles to each other. 

 Using the algebraic methods: 

 Magnitude of the resultant:  
2 2

1 2F 12.25 68.5 9F F N      


 

Direction: 

2

1

7.5
tan 2.14 arctan 2.14

3.5

F
Then

F
      

 

3. Calculate the resultant force of , ,  1F 2F 3F
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Strategy: ① calculate the resultant of  1 2F and F

12 2 1 2F F F N    

② calculate the resultant force of , that is the resultant force 

of  

12 3F and F

1 2 3,F F and F

Magnitude of resultant force: 
2 2 2 2

12 3 2 6 6.32F F F N      

Direction: 

12

3

2 1
tan

6 3

F

F
     

1
arctan

3
   

 

4. A crane is used to raise one end of a steel girder off the ground, as shown 

in Fig. 4.1. When the cable attached to the end of the girder is at 20°to the 

vertical, the force of the cable on the girder is 6.5kN. Calculate the horizontal 

and vertical components of this force. 

 
Strategy: 

Resolving the force F = 6.5 kN 
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F1

F2

F

200

 

1 sin 20 6.5sin 20 2.2o oF F kN    (Horizontal components of the force) 

2 cos 20 6.5cos 20 6.1o oF F kN    (Vertical components of the force) 

 

5. (a) (i) State what is meant by a scalar quantity. 

  Scalar quantity: quantity has direction only. 

(ii) State two examples of scalar quantities. 

Example 1: mass 

Example 2: temperatures 

(b) An object is acted upon by two forces at right angles to each other. One of 

the forces has a magnitude of 5.0 N and the resultant force produced on the 

object is 9.5 N. 

Determine 

(i) The magnitude of the other force, 

Strategy: adding of vectors, using the Algebraic Methods 

Draw the forces below: 

 
And  2 2 2

1 2F F F 
2 2 2

25 9.5F 

2 8.1F N

 

So,  
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(ii) The angle between the resultant force and the 5.0 N force. 

  1 5
cos 0.53

9.5

F

F
   

0arccos0.53 58  

F ma

 

So  

 

6. (a) State the difference between vector and scalar quantities. 

Answers: Vector quantities have direction and scalar quantities do not. 

(b) State one example of a vector quantity (other than force) and one example 

of a scalar quantity. 

Vector quantity: velocity, acceleration. 

Scalar quantity: mass, temperature. 

(c) A 12.0 N force and a 8.0 N force act on a body of mass 6.5 kg at the same 

time. For this body, calculate 

(i) The maximum resultant acceleration that it could experience, 

  Strategy: by the Newton’s second law,  , the maximum resultant 

acceleration when the body has the maximum resultant force. And when the 

two forces are at the same direction, the body has the maximum resultant 

force.  

So, resultant force,  1 2 8 20F F F N    12

So the maximum resultant acceleration, 220
3.1

6.5

F
a ms

m
  

F ma

 

(ii) The minimum resultant acceleration that it could experience. 

  Strategy: by the Newton’s second law,  , the minimum resultant 

acceleration when the body has the minimum resultant force. And when the 

two forces are at the opposite direction, the body has the minimum resultant 

force.  

That is, resultant force,  1 2 8 4F F F N    12

So the minimum resultant acceleration, 24
0.62

6.5

F
a ms

m
    

 

7. Figure 7.1 shows a uniform steel girder being held horizontally by a crane. 

Two cables are attached to the ends of the girder and the tension in each of 

these cables is T. 
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C

420420

T
T

Fig. 7.1
 

(a) If the tension, T, in each cable is 850 N, calculate 

(i) The horizontal component of the tension in each cable, 

  Answers:  cos 42 850 cos 42 632hT T N   

sin 42 sin 42 1138vT T T N  

1138vW T N

(ii) The vertical component of the tension in each cable, 

    

(iii) The weight of the girder. 

   Strategy: the girder is at a uniform state, so the weight of the girder is 

equal to the vertical component of the tension. 

 So weight,  

(b) On Figure 7.1 draw an arrow to show the line of action of the weight of 

the girder. 

 

 

 

 

 

8. Which of the following contains three scalar quantities? 
A Mass Charge Speed 

B Density Weight Mass 

C Speed Weight Charge 

D Charge Weight Density 

Solution: 

Scalar: quantity has direction only. 

Examples of scalar: mass, temperatures, volume, work… 
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Vector: quantity both has magnitude and direction  

Examples of vectors: force, acceleration, displacement, velocity, 

momentum… 

weight m g    is a vector. Thus choose (A) And 

 

9. The diagram below shows two vectors X and Y. 

 
Which of the following best represents the vector Z = X – Y. 

 
Strategy: 

If two vectors are placed tail-to-tail at an angle , it can also be represented as 

a closed triangle. 



 
OA AC OC 
  

OB AC
 

  Because  

Solution: 

And X = Z + Y, thus choose (B) 

 

10. The magnitude and direction of two vectors X and Y are represented by 

the vector diagram below. 
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Which of the following best represents the vector (X–Y)? 

 
Solution: 

Let X minus Y to be Z: X–Y = Z, thus X = Z + Y 

 
Choose (D): 
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Chapter 3 Kinematics and Linear motion 

3-1 Displacement and velocity 

Distance: is the magnitude of the path covered, is a scalar. 

SI unit: metre (m) 

Displacement: the change in position between the starting point and the end 

point. 

SI unit: metre (m) 

Displacement is a vector; its direction is from the starting point to end point. 

For example: 

(i) An ant crawl along the arc that start from O to A (Fig. 3.1), 

 
Then:  

Distance 3.14R m     

Displacement 2OA m 


 

(ii) The ant now goes on crawling from A to B, 
Distance 1 4.14OCA AB R m      

Displacement 1OB m 


 

(iii) The ant now goes back from B to O, 

Note: the ant start from O then go back to O. that is starting point is O, the 

end point is O. 
Distance 2 5.14OCA AO R m    


 

Displacement 0OO m   

 

Speed: the distance traveled by a moving object over a period of time. 
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Constant speed: the moving object doesn’t change its speed. 
tandis ce

time taken

s
v

t





( )average speed

 

Unit: 1m / s or ms  

Velocity: the speed in a given direction. 

Average velocity: the change in position (displacement) over a period of 

time. 

change in position displacement x s

time taken time taken t t


   


averagev



s


 

Where  is displacement 

Unit: 1m / s or ms  

Velocity is a vector; the direction is the same as the direction of the 

displacement. 

Instantaneous velocity: the velocity that the moving object has at any one 

instance 
 

3-2 Acceleration 

Changing velocity (non-uniform) means an acceleration is present. 

We can define acceleration as the change of velocity per unit time. 

Uniform acceleration: the acceleration is constant, means the velocity of the 

moving object changes the same rate. 

Average acceleration: change in velocity over a period of time. 

Average acceleration
change in velocity

time taken
  

In symbol: 

average
v v u

a
t t

 
 


 

Where, v is the final velocity, u is the initial velocity. 

SI unit: Meters per second squared (m/s2) 

Acceleration is a vector; the direction is the same as the direction of the 

change of velocity. 
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3-3 Equations for uniform acceleration 

Consider a body is moving along a straight line with uniform acceleration, 

and its velocity increases from u (initial velocity) to v (final velocity) in time 

t. 

First equation: 

acceleration
change in velocity

time taken

v u
a

t






 

So  

at v u  v u at or …… ①  

Second equation: 
change in position displacement

average velocity
time taken time taken

x s
v

t t

 


 

   

Because the body is moving along a straight line in one direction, the 

magnitude of the displacement is equal to the distance. 

And for the acceleration is uniform, 

,
2

v u
vthe average velocity


  

So 

2

v u

t

s  or v  
( )

2

v u
s t




v u at 

…… ② 

Third equation: 

From equation ①,  and equation ②, ( )

2

v u
s t


  

2( ) 1

2 2

u at u
s t ut at

 
  

v u at

…… ③ 

Fourth equation: 

 From equation,  

We get: 
2 2

2 2 2 2 2 2

( )

1
2 2 ( )

2

v u at

v u uat a t u a ut at

 

     
 

But 21

2
s ut at   
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So  
2 2 2v u as   …… ④ 

3-4 Displacement—time graphs 

Note: for a body moving along a straight line, we can only draw the 

displacement—time graphs (Fig. 3.2) 

 

(i) Represents the body moving along a straight line with constant velocity; 

And the slope or gradient of the displacement—time graph represents the 

velocity of the body. 

(ii) The body keeps rest with displacement S2. 

(iii) The body keeps rest with zero displacement. 

(iv) The body moving along the opposite direction with constant velocity and 

initial displacement S0. 

(v) The point P means the displacement when the objects meeting with each 

other. 

(vi) Displacement of the body is S1 at time t1. 
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3-5 Velocity—time graphs 

 
(i) represents the body moving along a straight line with constant acceleration; 

And the slope or gradient of the velocity—time graph represents the 

acceleration of the body. 

(ii) The body moving with constant velocity V2. 

(iii) The body keeps rest with zero velocity. 

(iv)The body moving along a straight line with constant deceleration with 

initial velocity V0; and the slope or gradient of the velocity—time graph 

represents the deceleration of the body  

(v)The point P means the same velocity when the objects meeting with each 

other. 

(vi)Velocity of the body is V1 at time t1 and the area under a velocity—time 

graph measures the displacement traveled. 

 

3-6 Free-fall motion 

6.1 Free-fall motion 

The motion of a body that is only acted on by gravity and falls down from 

rest is called free-fall motion. This motion can occur only in a space without 

air. If air resistance is quite small and neglectable, the falling of a body in the 

air can also be referred to as a free-fall motion. 

Galileo pointed out: free-fall motion is a uniformly accelerated rectilinear 

motion with zero initial velocity. 

6.2 Acceleration of free-fall body 
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All bodies in free-fall motion have the same acceleration. This acceleration is 

called free-fall acceleration or gravitational acceleration. It is usually 

denoted by g.  

The magnitude of gravitational acceleration g / ( 2m s ) 

Standard value:  29.80665 /g m s

s

The direction of gravitational acceleration g is always vertically downward. 

Its magnitude can be measured through experiments. 

Precise experiments show that the magnitude of g varies in different places 

on the earth. For example, at the equator . We take  

for g in general calculations. In rough calculations,  is used. 

29.780 /g m

10 /m s

29.81 /m s

2

As free-fall motion is uniformly accelerated rectilinear motion with zero 

initial velocity, the fundamental equations and the deductions for uniformly 

accelerated rectilinear motion are applicable for free-fall motion. What is 

only needed is to take zero for the initial velocity (u) and replace acceleration 

a with g. 
 

3-7  15 Worked examples 

1. An aero plane taking off accelerates uniformly on a runway from a 

velocity of  to a velocity of 13ms 190ms  in 45s. 

Calculate: 

(i) Its acceleration. 

(ii) The distance on the runway. 

Solution: data:  1 13 93u ms v ms t    45s

Strategy: v u
v u at a

t


    , 21

2
s ut at   

Answers: 

193 3
2

45

v u
a ms

t
 

    

2 21 1
3 45 2 45 2160 2.16

2 2
s ut at m km          

 

2. A car accelerates uniformly from a velocity of 115ms  to a velocity of 

 with a distance of 125m. 125ms

Calculate: 

(i) Its acceleration 
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(ii) The time taken 

Solution: 

Data:  1 115 25 125u ms v ms s    m

Strategy: 
 2 2

2 2 2
2

v u
v u as a

s


     

        v u
v u at t

a


     

Answers: 
 2 2 2 2

225 15
1.6

2 2 125

v u
a m

s
s

 
  


 

        25 15
6.25

1.6

v u
v u at t s

a

 
       

 

3. A racing car starts from rest and accelerates uniformly at  in 

30seconds, it then travels at a constant speed for 2min and finally decelerates 

at  until it stops, determine the maximum speed in km/h and the total 

distance in km it covered. 

22ms

23ms

Strategy:  

First stage: , 1 20 2u ms a ms t    30 160v u at mss     

Second stage: moving with a constant speed 160ms  for 2min. 

Third stage:  1 1 260 0 3 ( )u ms v ms a ms decelerat     ion

Answers: 

First stage:  160v u at ms  

          2 2
1

1 1
2 30 900

2 2
s ut at m       

Second stage: the final speed of the first stage is the constant speed of the 

second stage. 

2 60 2min 60 2 60 7200

(1min 60 )

s vt m

s

      


 

Third stage: 
2 2 2

2 2
3

0 60
2 600

2 2 ( 3)

v u
v u as s m

a

 
     

 
 

So  

Maximum speed = 1 60
60 60 60 216 /

1000
ms km h      

Total distance =  1 2 3 900 7200 600 8700 8.7s s s m km      
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4. Figure 4.1 shows the shuttle spacecraft as it is launched into space. 

Fig. 4.1 shuttle spacecraft 
launching into space  

During the first 5 minutes of the launch the average acceleration of the 

shuttle is . 214.5ms

a. Calculate the speed of the shuttle after the first 5 minutes. 

b. Calculate how far the shuttle travels in the first 5 minutes. 

Data: 1 20 , 14.5 , 5min 300secu ms a ms t      

Strategy: 21
,

2
v u at s ut at   

0 14.5 300 4350 4.35v u at m km      

 

Answers: a.  

        b. 2 21 1
0 14.5 300 652500 652.5

2 2
s ut at m km         

 

5. Figure 5.1 shows an incomplete velocity—time graph for a boy running a 

distance of 100m. 

a. What is his acceleration during the first 4 seconds?  

b. How far does the boy travel during (i) the first 4 seconds, (ii) the next 9 

seconds? 

c. Copy and complete the graph showing clearly at what time he has 

covered the distance of 100m. Assume his speed remains constant at the 

value shown by the horizontal portion of the graph. 
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Solution: 

a. the gradient of the velocity—time graph represents the acceleration of the 

body. 

During the first 4 seconds, 5
gradient 1.25

4
   

2acceleration 1.25ms  

b. (i) the area under a velocity—time graph measures the displacement 

traveled. 

1
1

4 5 10
2

area S      

Displacement 10m  

(ii) The next 9 seconds, 2area 9 5 45S     

Displacement 45m  

c. during the first 13 seconds, the distance covered is 10 + 45 = 55m,  

The area needed  3S 100 55 45  

So from 13s to 22 s, he covers S3 = 45 m. 

 

6. A constant resultant horizontal force of N acts on a car of mass 

900 kg, initially at rest on a level road. 

31.8 10

(a) Calculate 

(i) The acceleration of the car, 

Strategy: by the Newton’s second law, F ma , F
a

m
  

So 
3

21.8 10
2

900

F
a ms

m Kg


    
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(ii) The speed of the car after 8.0 s, 

Strategy: initial velocity, , 0u  8.0t s , 22a ms

v u at 
10 2 8 16v ms   

4 1900 16 1.44 10momentum mv kgms

. And from the equation: 

, gives 

 

(iii) The momentum of the car after 8.0 s, 

Strategy: The product of an object’s mass m and velocity v is called its 

momentum: 
      

(iv) The distance traveled by the car in the first 8.0 s of its motion, 

Strategy: 21

2
s ut at   

21
0 2 8 64

2
S m    

31.8 10 64 115.2W FS kJ    

 

(v) The work done by the resultant horizontal force during the first 8.0 s. 

Strategy: Work done=force × distance moved in direction of force. 

 

(b) On the axes below (Fig. 6.1) sketch the graphs for speed, v, and distance 

traveled, s, against time, t, for the first 8.0 s of the car’s motion. 

Strategy: for the first 8.0 s, the car is moving with constant acceleration, 

, so the gradient of the v—t graph is equal to 22a ms 22ms  

 
(c) In practice the resultant force on the car changes with time. Air resistance 

is one factor that affects the resultant force acting on the vehicle. 

You may be awarded marks for the quality of written communication in your 

answer. 
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(i) Suggest, with a reason, how the resultant force on the car changes as its 

speed increases. 

Answers: the resultant force decreases as its speed increases, because the air 

resistance increases as its speed increases, and the engine force of the car is 

constant, so the constant force decreases. 

(ii) Explain, using Newton’s laws of motion, why the vehicle has a maximum 

speed. 

As the velocity increases, the air resistance increases, so the resultant force 

decreases, which means the acceleration of the car decreases, but the velocity 

is still increasing till the resultant force is zero (acceleration of the car is zero), 

according to the Newton’s first law, then the vehicle has a maximum speed. 

 

7. Fig. 7.1 represents the motion of two cars, A and B, as they move along a 

straight, horizontal road. 

Fig. 7.1 motion of two cars
 

(a) Describe the motion of each car as shown on the graph. 

 (i) Car A: is moving with constant speed 116ms

(ii) Car B: accelerates in the first 5 seconds, and then moving with constant 

speed . 118ms

(b) Calculate the distance traveled by each car during the first 5.0 s. 

(i) Car A: 

Strategy: car A moving with constant speed, so distance of car A,  
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So  16 5 80AS ut m   

(ii) Car B:  

Strategy: in the first 5 seconds, car B accelerates, and from the graph, the 

gradient of the v—t graph for B is18 14
0.8

5




20.8a ms

, that is the acceleration of B is 

 

So 2 21 1
14 5 0.8 5 80

2 2BS ut at m         

(c) At time t = 0, the two cars are level. Explain why car A is at its maximum 

distance ahead of B at t = 2.5 s 

Because car A is faster than car B at the first 2.5s, so for the first 2.5s, the 

distance between them increases till they have the same speed at 2.5s. After 

2.5s, car B is faster than car A, so the distance then decreases. So at the time 

2.5s, car A is at its maximum distance ahead of B. 

 

8. A car accelerates from rest to a speed of 26ms-1. Table 8.1 shows how the 

speed of the car varies over the first 30 seconds of motion. 

Table 8.1 
Time/s 0 5.0 10.0 15.0 20.0 25.0 30.0 

Speed/ms-1 0 16.5 22.5 24.5 25.5 26.0 26.0 

(a) Draw a graph of speed against time on the grid provided (Fig. 8.1). 

 
Note: you must draw the right scales and the six points are correctly plotted, 

and it is a trend line not a straight line. 
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(b) Calculate the average acceleration of the car over the first 25 s. 

Strategy: 226
1.04

25

v
a ms

t


  


 

(c) Use your graph to estimate the distance traveled by the car in the first 25 

s. 

Strategy: area under the v—t graph represents the distance traveled. 

So from the graph, its distance is 510m 

(d) Using the axes below, sketch a graph to show how the resultant force 

acting on the car varies over the first 30 s of motion. 

Solution: 

From table 8.1, the rate of change of speed decreases to zero, thus the 

resultant force decreases to zero. As shown in Fig. 8.2. 

 
(e) Explain the shape of the graph you have sketched in part (d), with 

reference to the graph you plotted in part (a). 

 Because the first graph shows that the gradient of the car decreases, which 

means that the acceleration of the car decreases, and by the Newton’s second 

law, , the force, F, decreases, and as the acceleration is changing in 

the first 25s, so the force is also changing, so the graph of the force is not a 

straight line. 

F ma

 

9. A supertanker of mass , cruising at an initial speed of , 

takes one hour to come to rest. 

84.0 10 kg 4.5 /m s

(a) Assuming that the force slowing the tanker down is constant, calculate 

(i) The deceleration of the tanker, 

Solution: 
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The force slowing the tanker down is constant, so the tanker decelerates 

uniformly. Therefore, deceleration of the tanker is given by 

3 20 4.5 4.5
1.25 10 /

1 60 60
a m s

t
 

   
 

 

(ii) The distance travelled by the tanker while slowing to a stop. 

Solution: 

The average speed is given by 
0 4.5

2.25 /
2

v m s


   

So the distance traveled: 2.25 1 60 60 8100s vt m       

(b) Sketch, using the axes below, a distance-time graph representing the 

motion of the tanker until it stops. 

Time/s

Distance/m

Fig. 9.1 Distance—time graph
 

(c) Explain the shape of the graph you have sketched in part (b). 

Solution: 

Because the speed is decreasing, the gradient of the curve decreases in the 

distance-time graph. 

 

10. (a) A cheetah accelerating uniformly from rest reaches a speed of 

in 2.0 s and then maintains this speed for 15 s. Calculate 29 /m s

(i) Its acceleration, 

Solution: 

Using 229 0
14.5 /

2

v u
a m s

t

 
    

(ii) The distance it travels while accelerating, 

Solution: 
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2 21 1
0 14.5 2 29

2 2
s ut at m      

29 15 435s vt m   

 

(iii) The distance it travels while it is moving at constant speed. 

Solution: 

 

(b) The cheetah and an antelope are both at rest and 100 m apart. The cheetah 

starts to chase the antelope. The antelope takes 0.50 s to react. It then 

accelerates uniformly for 2.0 s to a speed of and then maintains this 

speed. Fig. 10.1 shows the speed-time graph for the cheetah. 

25 /m s

 
(i) Using the same axes plot the speed-time graph for the antelope during the 

chase. 

Solution: 

The antelope takes 0.50 s to react and accelerates uniformly for 2.0 s to a 

speed of 25 m/s. thus we can get the speed-time graph beginning with 0.50 s. 

(ii) Calculate the distance covered by the antelope in the 17 s after the 

cheetah started to run. 

Solution: 

The antelope accelerates from rest, and reaches to a speed of 25 m/s in 2 s. 

then maintains this speed. Thus the distance is given by 

2 25 (17 2 0.5) 12.5 2 25 14.5 387.5
2

v u
s m


            

(iii) How far apart are the cheetah and the antelope after 17 s? 
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Solution: 

From (a), the distance of cheetah is 1 435 29 464s m  

1100 387.5 100 464 23.5

 

And at the beginning, they are 100 m apart. Thus  

s s s m         

 

11. Figure 11.1 shows a distance-time graphs for two runners, A and B, in a 

100 m race. 

Fig. 11.1 distance—time graph for two runners
 

(a) Explain how the graph shows that athlete B accelerates throughout the 

race. 

Solution: 

The gradient is changing (increasing) 

(b) Estimate the maximum distance between the athletes. 

Solution: 

When B’s speed is the same as A’s, it has the maximum distance between the 

athletes. From the graph is the gradient of B curve is the same that of A. 

From the graph, the maximum distance is 25 m. 

(c) Calculate the speed of athlete A during the race. 

Solution: 

For A, it has a distance in time 11 s, thus  
tan 100

9.1 /
11

dis ce m
speed m s

time s
    

(d) The acceleration of athlete B is uniform for the duration of the race. 
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(i) State what is meant by uniform acceleration. 

(ii) Calculate the acceleration of athlete B. 

Solution: 

(i) The acceleration keeps the same or the velocity increases uniformly with 

time. 

(ii) For B, its initial velocity is u = 0 m/s, distance s = 100 m, time taken  

t = 11 s. 

Thus, using 2 21 1

2 2
s ut at at   , gives 

2
2 2

2 2 100
1.7 /

11

s
a m s

t


    

 

12.An aircraft accelerates horizontally from rest and takes off when its speed 

is 82 m s-1. The mass of the aircraft is and its engines provide a 

constant thrust of . 

45.6 10 kg
51.9 10 N

(a) Calculate 

(i) The initial acceleration of the aircraft, 

Solution: 

(i) Initially, the resultant force , from Newton’s second law: 51.9 10F   N

F ma , we can get that  
5

2
4

1.9 10
3.4 /

5.6 10

F N
a m s

m kg


  


 

(ii) The minimum length of runway required, assuming the acceleration is 

constant. 

Solution: let the minimum length of the runway required L. thus  
2 2 2v u aL   

Therefore 
2 2 282 0

989
2 2 3.4

v u
L m

a

 
  


 

(b) In practice, the acceleration is unlikely to be constant. State a reason for 

this and explain what effect this will have on the minimum length of runway 

required. 

Solution: 

In practice, the air resistance increases with speed, hence the runway will be 

longer. 
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(c) After taking off, the aircraft climbs at an angle of 22° to the ground. The 

thrust from the engines remains at . Calculate 51.9 10 N

(i) The horizontal component of the thrust, 

(ii) The vertical component of the thrust. 

Solution: 

 
The thrust  51.9 10T N 

0 5
1 cos 22 1.76 10F T N  

0 5
2 sin 22 0.71 10F T N  

The horizontal component of the thrust is given by 

 

The vertical component of the thrust is given by 

 

 

13. Figure 13.1 shows how the velocity, v, of a car varies with time, t. 

Fig. 13.1 velocity—time graph
 

(a) Describe the motion of the car for the 50 s period. 

You may be awarded additional marks to those shown in brackets for the 

quality of written communication in your answer. 

Solution: 

0—20 s: the car uniformly accelerates to a velocity of 15 m/s. 

20—40 s: the car moves with constant velocity 15 m/s. 

40—50 s: the car uniformly decelerates from a velocity of 15 m/s to 0 m/s. 
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(b) The mass of the car is 1200 kg. Calculate for the first 20 s of motion, (b) 

(i) the change in momentum of the car, 

(b) (ii) the rate of change of momentum, 

(b) (iii) the distance travelled. 

Solution: for the first 20 s of motion 

(i) At t = o s, the initial velocity is u = 0 m/s; at t = 20 s, the final velocity is v 

= 15 m/s. thus the change in momentum of the car is given by 

Therefore,  

 4(1200 ) 15 / 0 1.8 10 /p mv mu kg m s kg m s        

(ii) 
4

3 21.8 10 /
The rate of change of momentum 0.9 10 /

20

change in momentum kg m s
kg m s

time taken

 
    

(iii) The area under a velocity—time graph measures the displacement 

traveled. 

Thus the area for the first 20 s is given by  
1

20 15 150
2

A      

Therefore the distance traveled is 150 m. 

 

14. A car is travelling on a level road at a speed of 15.0 m s-1 towards a set of 

traffic lights when the lights turn red. The driver applies the brakes  

0.5 s after seeing the lights turn red and stops the car at the traffic lights. 

Table 14.1 shows how the speed of the car changes from when the traffic 

lights turn red. 

Table 14.1 
Time/s 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Speed/ms-1 15.0 15.0 12.5 10.0 7.5 5.0 2.5 0.0 

(a) Draw a graph of speed on the y-axis against time on the x-axis on the grid 

provided (Fig. 14.1). 
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(b) (i) State and explain what feature of the graph shows that the car’s 

deceleration was uniform. 

Solution: 

Deceleration is uniform because the graph is a decreasing straight line. And 

the gradient of the line represents the deceleration. 

(b) (ii) Use your graph to calculate the distance the car travelled after the 

lights turned red to when it stopped. 

Solution: 

Distance traveled = area under the line (0s to 3.5s). 
1

Area (0.5 3.5) 15 30
2

      

Therefore, distance traveled = 30 m. 

 

15. Galileo used an inclined plane, similar to the one shown in Fig. 15.1, to 

investigate the motion of falling objects. 

(a) Explain why using an inclined plane rather than free fall would produce 

data which is valid when investigating the motion of a falling object. 

Solution: 

Freefall is too quick; Galileo had no accurate method to time freefall. 

(b) In a demonstration of Galileo’s investigation, the number of swings of a 

pendulum was used to time a trolley after it was released from rest. A block 

was positioned to mark the distance that the trolley had travelled after a 

chosen whole number of swings. 
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Fig. 15.1  
The mass of the trolley in Fig. 15.1 is 0.20 kg and the slope is at an angle of 

1.8°to the horizontal. 

(b) (i) Show that the component of the weight acting along the slope is about 

0.06 N. 

Solution: 

The component of weight acting along the slope is given by 
0

1 sin1.8 0.2 9.81 0.031 0.06W W N      

(b) (ii) Calculate the initial acceleration down the slope. 

Solution: 

The initial resultant force along the slope equals to W1, thus 

21 0.06
0.3 /

0.2

W
a m s

m
    

 

(c) In this experiment, the following data was obtained. A graph of the data 

(Fig. 15.2) is shown below it. 
Time/pendulum swings Distance travelled/m 

1 0.29 

2 1.22 

3 2.70 

4 4.85 
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(c) From Fig. 15.2, state what you would conclude about the motion of the 

trolley? 

Give a reason for your answer. 

Solution: 

The gradient of the curve increases as time increasing. Thus the speed of the 

trolley is increasing. 

(d) Each complete pendulum swing had a period of 1.4 s. Use the 

distance-time graph above to find the speed of the trolley after it had 

travelled 3.0 m. 

Solution: 

From Fig. 15.2, the time taken for traveling 3.0 m is given by 
1.4

3 1.4 1.5 4.41
10

t s      
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And initial speed , thus 0 /u m s

2 2

u v vt
s t


   , gives  

2 2 3.0
Speed,  v   1.36 /

4.41

s m
m s

t s


    
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Module 2: Forces in action 

Chapter 1 Force and Nonlinear motion 

1-1 Force definition 

Interaction of objects is called Force. Force is a vector; the SI unit is the 

Newton (N). 

If two or more forces act on something, their combined effect is called the 

net (resultant) force. 

Two simple examples are shown below: 

 
Newton definition: 

1 Newton (N), as the amount of force that will give an object of mass 1 kg an 

acceleration of . 21m s

1-2 Weight and g 

On Earth, everything feels the downward force of gravity. This gravitational 

force is called weight. As for other forces, its SI unit is the Newton (N). 

Near the Earth’s surface, the gravitational force on each kg is about 10 N; the 

gravitational field strength is 10 N kg -1. This is represented by the symbol g. 

So weight = mass × gravitational field strength 

In symbol  

W = mg 

For example, in the diagram below, all the masses are falling freely (gravity 

is the only force acting). From F = ma, it follows that all the masses have the 

same downward acceleration, g. this is the acceleration of free fall. 

210
weight

acceleration ms g
mass

    

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 



 
Note: you can think of g: 

Either as a gravitational field strength of 10 N kg -1 

Or as an acceleration of free fall of 10 m s -2 

In more accurate calculations, the value of g is normally taken to be 9.81, 

rather than 10. 

1-3 Newton’s first law of motion 

If there is no resultant force acting: 

① A stationary object will stay at rest, 

② A moving object will maintain a constant velocity (a steady speed in a 

straight line). 

From Newton’s first law, it follows that if an object is at rest or moving at 

constant velocity, then the forces on it must be balanced. 

Note: the more mass an object has, the more it resists any change in motion 

(because more force is needed for any given acceleration). Newton called this 

resistance to change in motion inertia. 

Momentum: 

The product of an object’s mass m and velocity v is called its momentum: 

momentum mv  
1kg ms . It is a vector. Momentum is measured in

1-4 Newton’s second law 

The rate of change of momentum of an object is proportional to the resultant 

force acting. 

This can be written in the following form: 
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tan
change in momentum

resul t force
time taken

  

In symbol: 
mv mu

F
t


 ……  ① 

Where v is final velocity, u is initial velocity of an object. 

Equation  can be rewritten ①
( )m v u

F
t


  

And acceleration, v u
a

t




F ma

. So 

……  ② 

Note:  

1. Equation  and  are therefore different versions of the same principle.① ②  

2. F = ma cannot be used for a particle traveling at very high speeds because 

its mass increases. 

3. When using equations  and , remember that ① ② F is the net (resultant) 

force acting. For example, for the figure below, the net (resultant) force is 

 to the right. The acceleration a can be worked out as follows: 26 20 6N 

26
3

2

F
a m

m
s    

 
Impulse: 

As (m v u
F

t




)  can be rewritten Ft mv mu   

In words force × time = change in momentum. 

The quantity ‘force × time’ is called an impulse. 

A given impulse always produces the same change in momentum, 

irrespective of the mass. For example, if a resultant force of 6 N acts for 2s, 

the impulse delivered is 6×2=12Ns. 

This will produce a momentum change of 112kgms  

So a 4 kg mass will gain  of velocity 13ms

Or a 2 kg mass will gain  of velocity, and so on. 16ms
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The graph below is for a uniform net force of 6 N. in 2s, the impulse 

delivered is 12 Ns. numerically, and this is equal to the area of the graph 

between the 0 and 2 s points. 

 

1-5 Newton’s third law of motion 

If A is exerting a force on B, then B is exerting an equal but opposite force on 

A. 

The law is sometimes expressed as follows: 

To every action, there is an equal but opposite reaction. 

Note:  

·It does not matter which force you call the action and which the reaction. 

One cannot exist without the other. 

·the action and reaction do not cancel each other out because they are acting 

on different objects. 

 

1-6 drag force and terminal speed 

Any object moving through a fluid experiences a force that drags on it due to 

the fluid. The drag force depends on: 

(i) The shape of the object 

(ii) Its speed 

(iii) The viscosity of the fluid which is a measure of how easily the fluid 

flows past a surface. 

Note: the faster an object travels in a fluid, the greater the drag force on it. 

1. Drag force in air 

Considering an object released from rest in air, and then the speed of the 

object increases as it falls, so the drag force on it due to the fluid increases. 

The resultant force on the object is the difference between the force of gravity 

on it (its weight) and the drag force. As the drag force increases, the resultant 
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force decreases, so the acceleration becomes less as it falls. If it continues 

falling, it attains terminal speed, when the drag force on it is equal and 

opposite to its weight. Its acceleration is then zero and its speed remains 

constant as it falls. 

And at any instant, the resultant force F = mg－D, where m is the mass of the 

object and D is the drag force. 

Therefore, the acceleration of the object, mg D D
a g

m m


  

6

 

Note:  

(i) The initial acceleration = g because the speed is zero, and therefore the 

drag force is zero; at the instant the object is released. 

(ii) At the terminal speed, the potential energy lost by the object is converted, 

as it falls, to internal energy of the fluid by the drag force. 

 

2. Drag force in liquid 

An object moving through a fluid experiences a resistive force, or drag, that 

is proportional to the viscosity of the fluid. If the object is moving slowly 

enough, the drag force is proportional to its speed v. if the object is a sphere 

of radius r, the force is  

F rv
 

Where   is again the coefficient of viscosity. This equation is known as 

Stokes’s law. Stokes’s law can be used to relate the speed of a sphere falling 

in a liquid to the viscosity of that liquid. 

Consider a solid sphere of radius r dropped into the top of a column of liquid 

(Fig. 1.1). At the top of the column, the sphere accelerates downward under 

the influence of gravity. However there are two additional forces, both acting 

upward: the constant buoyant force and a speed-dependent retarding force 

given by Stokes’s law. When the sum of the upward forces is equal to the 

gravitational force, the sphere travels with a constant speed , called the 

terminal speed. To determine this speed, we write the equation for the 

equilibrium of forces: 

tv

grav buoyant dragF F F   

We can express the gravitational force in terms of the density   of the 
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sphere, its volume 34

3
r , and g: 

34

3gravF r g   

The buoyant force is equal to the weight of the displaced liquid, which has a 

density ： 

34

3buoyantF r g 

6 tdragF rv

 

The retarding force is expressed by Stokes’s law with the speed : tv

 

Combining these equations, we get an expression for the terminal speed: 
22 ( )

9t
r gv  


    

The terminal speed is also called the sedimentation speed by biologists and 

geologists. 



, 

 

Note: Stokes’s law applies for situations in which the fluid flow is laminar, 

but not when the flow becomes turbulent. 

But whenever an object moves rapidly enough, the retarding force F depends 

not on the speed (Stokes’s law), but on the square of the speed: 
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2F bv  

Where b is a constant determined for each different case. 

An object falling from rest through the air falls with increasing speed until, at 

the terminal speed , the retarding force of the air is equal in magnitude to 

the gravitational force: 

tv

2
tmg bv  

Thus, the terminal speed can be written as 

t
mgv
b

  

Where the constant b depends on the density   of the air and the area A of 

the body presented to the air flow. Then the equation for the terminal speed is 

2D

t
AC

mgv   

Where CD is called the drag coefficient. This equation also holds for objects 

moving horizontally through the air at any speed if mg is replaced by the 

retarding, or drag, force on the object. Thus, the aerodynamic drag on a 

moving object, such as a car, becomes approximately 

20.65drag DF C Av
 

 

1-7  9 Worked examples 

1. A rocket engine ejects 100kg of exhaust gas per second at a velocity 

(relative to the rocket) of 200m/s (Fig. 1.1). What is the forward thrust (force) 

on the rocket? 

Fig. 1.1
 

By Newton’s third law, the forward force on the rocket is equal to the 
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backward force pushing out the exhaust gas. By Newton’s second law, this 

force F is equal to the momentum gained per second by the gas, so it can be 

calculated using equation (m v u
F

t

)
  with the following values: 

1100 1 0 200m kg t s u v ms     

So, ( ) 100 (200 0)
20000

1

m v u
F N

t

  
   . 

 

2. A block of mass 2kg is pushed along a table with a constant velocity by a 

force of 5N. When the push is increased to 9N, what is  

a. the resultant force, 

b. the acceleration？ 

Solution: when the block moves with constant velocity the forces acting on it 

are balanced. The force of friction opposing its motion must therefore be 5N. 

a. When the push is increased to 9N the resultant force F on  the block is 

(9-5) N=4N, (since the frictional force is still 5N). 

b. The acceleration a is obtained from F ma  where F=4N and m=2kg. 
2

24 4
2

2 2

F N kgms
So a ms

m kg kg


     

 

3. A car of mass 1200kg traveling at 72km/h is brought to rest in 4s. Find  

a. the average deceleration, 

b. the average braking force, 

c. The distance moved during the deceleration. 

Solution: 

a. The deceleration is found from v u at   where 0v  . 

172 1000
72 / 20

60 60
u km h ms


  


 

And  4t s

Hence  0 20 4a  

So  25a ms 

The deceleration is  25ms

b. The average braking force F is given by F ma , where 1200kg  and 
25 . Therefore  

m 

a ms 
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1200 ( 5) 6000F N      

‘－’ represents the direction of the braking force is opposite to the motion of 

the car. 

So the braking force is 6000N. 

c. To find the distance moved, we used 
20 0

4 40
2 2

u v
s t

 
    m  

 

4. (a). what resultant force produces an acceleration of  in a car of 

mass 1000kg. 

25ms

(b). what acceleration is produced in a mass of 2kg by a resultant force of 

30N. 

Solution: 

a. use  1000 5 5000F ma N   

b. 230
15

2

F
F ma a ms

m
      

 

5. A rocket has a mass of 500kg. 

a. What is its weight on earth where g=10N/kg. 

b. At lift-off the rocket engine exerts an upward force of 25000N. What is the 

resultant force on the rocket? What is its initial acceleration？ 

Solution： 

a. weight=mass × gravitational field strength 

weight 500 10 5000N    

b. resultant force = upward force - weight=25000 – 5000 = 20000N 

 So initial acceleration, 2tan 20000
40

500

resul t force
a m

mass
s    

 

6. An athlete trains by dragging a heavy load across a rough horizontal 

surface (Fig. 6.1). 
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F1=Fcos250

F2 = F sin250

Fig. 6.1
 

The athlete exerts a force of magnitude F on the load at an angle of 250 to the 

horizontal. 

(a) Once the load is moving at a steady speed, the average horizontal 

frictional force acting on the load is 470 N. 

Calculate the average value of F that will enable the load to move at constant 

speed. 

Solution: 

The load is moving at constant speed, from Newton’s first law, the resultant 

force is equal to zero. Thus 

F1 = Fcos250 = frictional force = f = 470 N 

The average value of F is given by 

0

470
519

cos 25

N
F N   

 

(b) The load is moved a horizontal distance of 2.5 km in 1.2 hours. 

Calculate 

(i) The work done on the load by the force F. 

Solution: 

Work done=force × distance moved in direction of force. 
0 3 3

1 ( cos 25 ) (2.5 10 ) 470 2.5 10 1175W F S F N m kJ          

 

(ii) The minimum average power required to move the load. 

Solution: 
31175 10

272
1.2 60 60

J
W

s

work done
power

time taken


 
 

  

 

(c) The athlete pulls the load uphill at the same speed as in part (a). 
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Explain, in terms of energy changes, why the minimum average power 

required is greater than in (b)(ii). 

Solution: 

When the load is pulled uphill, some of the work need to be done to increase 

the gravitational potential energy. 

 

7. An aluminum sphere of radius 1.0 mm is dropped into a bottle of glycerin 

at 20 ℃. What is the terminal speed of the sphere? 

Solution: 

We calculate the terminal speed directly by using the equation 
22 ( )

9t
r gv  


    

The radius in meters is . The densities are given by 

 and . The viscosity is given by 

31.0 10 m
31.26 10 /kg m 32.7 10 /kg m  

1.49

3 3

R Pa s  . Thus, 
32.1 10 /tv m s 

0.2 5s V t V   

 

 

8. A steel ball of mass 0.15kg released from rest in a liquid, falls a distance of 

0.20m in 5.0s. Assuming the ball reaches terminal speed within a fraction of a 

second, calculate 

(i) Its terminal speed, 

(ii) The drag force on it when it falls at terminal speed. 

Strategy: as the ball reaches terminal speed within a fraction of a second, so 

the ball falls a distance of 0.20m in 5.0s with the constant terminal speed, let 

the terminal speed V. 

So (i)  

     V = 0.04 m s -1 

  (ii) When the ball falls at terminal speed, the drag force on it is equal and 

opposite to its weight. 

    So drag force, F = weight = mg = 0.15×9.8 = 1.47 N 

 

9. Explain why a raindrop falling vertically through still air reaches a 

constant velocity. 

Answers: Because as the falling of the raindrop, its speed is increasing; and 
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the air resistance of the raindrop is increasing with the increasing speed, so 

the resultant force of the raindrop decreases, by the Newton’s second law, 
F ma , its acceleration decreases. So when the speed reaches to a certain 

value, the resultant force is equal to zero, then the raindrop reaches a constant 

velocity. 
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Chapter 2 Equilibrium 

2-1 balanced forces 

When forces act on a point object, the object is in equilibrium means the 

resultant force is zero (the object keeps at rest or moving at constant speed). 

In other words, when a point object keeps at rest or moving at constant speed, 

means it is in equilibrium and the resultant forces on it is zero. 

Conditions for equilibrium for two or three coplanar forces acting at a point: 

(i) When two forces act on a point object, the object is in equilibrium (at rest 

or moving at constant velocity) only if the two forces are equal and opposite 

of each other. The resultant of the two forces is therefore zero. The two 

forces are said to be balanced. 

(ii) When three forces act on a point object, the object is in equilibrium (at 

rest or moving at constant velocity) only if the resultant of any two of the 

forces is equal and opposite to the third force. 

·resolve each force along the same parallel and perpendicular lines 

·balance the components along each line. 

2-2 moments 

The moment of a force about any point is defined as the force × the 

perpendicular distance from the line of action of the force to the point. 

That is: 

      The moment of the force = F × d 

Note: d is the line of action of the force to the point.  

Unit of the moment of the force: Newton metre (Nm) 

 

For examples 

(i) 
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sind L 

sinFL

 

The moment of the force = F × d =   

We can also resolve the force F 

 
The force cosF   does not cause turning effect, Moment of the force cosF   

is zero. (d = 0) 

And the perpendicular distance from the line of action of the force sinF  to 

the point is L. 

The moment of the force: 

F × d = cos 0F   sin sin sinF d F L FL +       

(ii) 

 
d L

FL

 

The moment of the force = F × d =  

2-3 Couples and torque of a couple 

When a driver turn s a steering wheel (Fig. 2.1), he exerts two equal but 

opposite forces on it. The two forces form a couple. The turning effect of a 

couple is the sum of moment of the two forces. The moment of a couple is 

called a torque. 
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So  

(i) A couple consists of two forces, equal in magnitude but opposite in 

direction whose lines of action do not coincide. 

(ii) The torque of a couple is the product of one of the forces and the 

perpendicular distance between the forces. 

 

For example 

Calculate the torque produced by two forces, each of magnitude 30 N, acting 

in opposite directions with their lines of action separated by a distance of 

25cm. 

Answers: 

Torque = force × separation of forces 

      = 30×25×10 -2  

      = 7.5 N m 

2-4 the principle of moments 

Condition for equilibrium: 

 the net external force must be zero⒈  

    
0

0 0X y

F

F and F



 

 



 the net external⒉  torque must be zero 

    0 
Then considering the moments of the forces about any point, for equilibrium, 

The sum of the clockwise moments = the sum of the anticlockwise moments; 

This statement is known as the principle of moments. 
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2-5 Centre of gravity and Determination of Centre of Gravity (c.g.) of 

irregular lamina using the plumb line method 

(i) An object may be made to balance at a particular point. When it is 

balanced at this point, the object does not turn and so all the weight on one 

side of the pivot is balanced by the weight on the other side. Supporting the 

object at the pivot means that the only force which has to be applied at the 

pivot is one to stop the object falling—that is, a force equal to the weight of 

the object. Although all parts of the object have weight, the whole weight of 

the object appears to act at his balance point. This point is called the centre of 

gravity of the object. 

 Center of Gravity: The point on the object that no turning effect produced 

by the force of the gravity. 

Note: for a uniform body such as a ruler, the centre of gravity is at the 

geometrical centre. 

(ii) Determination of Centre of Gravity (c.g.) of irregular lamina using the 

plumb line method: 

Suppose we have to find the c.g. of an irregularly shaped lamina of cardboard 

(Fig. 2.2). 

Make a hole A in the lamina and hang it so that it can swing freely on a nail 

clamped in a stand. It will come to rest with its c.g. vertically below A. to 

locate the vertical line through A tie a plumb line to the nail, the figure below, 

and mark its position AB on the lamina. The c.g. lies on AB. 

Hang the lamina from another position C and mark the plumb line position 

CD. The c.g. lies on CD and must be at the point of intersection of AB and 

CD. Check this by hanging the lamina from a third hole. Also try balancing it 

at its c.g. on the rip of your fore-finger. 
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2-6 Density and Pressure 

1. Weight density 

The quantity which relates a body’s weight to its volume is known as its 

weight density. 

The weight density D of a body is defined as the ratio of its weight W to its 

volume V. the SI unit is the Newton per cubic meter (N/m3). 

W
D

V
 W DV

 
2. Mass density 

Since the weight of a body is not constant but varies according to location, a 

more useful relation for density takes advantage of the face that mass is a 

universal constant, independent of gravity. 

The mass density   of a body is defined as the ratio of its mass m to its 

volume V. 

m

V
  m V

 
SI unit of mass density is kilograms per cubic meter (kg/m3). 

Note: 

The relation between weight density and mass density is found by recalling 

that , thus W mg

http://www.mppe.org.uk

Copyright  © mppe.org.uk and its license. All Rights Reserved 



W mg
D g

V V
  

 
 

3. Pressure 

To make sense of some effects in which a force acts on a body we have to 

consider not only the force but also the area on which it acts. For example, 

wearing skis prevents you sinking into soft snow because your weight is 

spread over a greater area. We say the pressure is less. 

Pressure is the normal force acting on unit area and is calculated from  

 
Where A is the area over which the perpendicular force F is applied. 

The unit of pressure is the Pascal (Pa); it equals 1 Newton per square metre 

(N/m2) and is quite a small pressure. 

The greater the area over which a force acts, the less the pressure. 

 
 

2-7  23 Worked examples 

1. For the figure below, if P is a force of 20N and the object moves with 

constant velocity. What is the value of the opposing force F? 

 
Solution: 

By the Newton’s first law of motion, the object is moving with constant 

velocity, its resultant force is zero, that is 0P F   

So  20F P N 
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2. An object resting on a horizontal surface (Fig. 2.1), the resultant force is 

zero. 

 
Then W = S 

 

3. An object of weight W = 5N is moving along a rough slope that is at an 

angle of 30    to the horizontal with a constant speed, the object is acted 

by a frictional force F and a support force S, as shown in Fig. 3.1: 

Calculate the frictional force F and the support force S. 



 
Strategy: 

The object moving down the slope with a constant speed means it keeping in 

equilibrium, that is the resultant of the three forces W, F, S is zero. Therefore 

resolve the forces along the slope and vertically to the slope (Fig. 3.2). 
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



 
From the figure, by the equilibrium condition,  

W2 = F     W1 = S 

And  2 sin 5sin 30 2.5oW W N  

1 cos 5cos30 4.3oW W N        

Frictional force F = W2 = 2.5N 

Support force S = W1 = 4.3N 

 

4. Fig. 4.1 shows a stationary metal block hanging from the middle of a 

stretched wire which is suspended from a horizontal beam. The tension in 

each half of the wire is 15 N. 

200200

15 N 15 N
T1 T2

A

Metal block

weight

Fig. 4.1
 

(a) Calculate for the wire at A, 

s, (i) The resultant horizontal component of the tension force
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     The resultant horizontal component of the tension forces is equal to  
      1 2cos 20 cos 20 0T T 

1 2sin 20 sin 20 10.3T T T N  

10.3W T N

(ii) The resultant vertical component of the tension forces. 

   The resultant vertical component of the tension forces, 
    

(b) (i) State the weight of the metal block. 

     Strategy: the metal block is at a stationary state, 

      So weight of the metal block,  

(ii) Explain how you arrived at your answer, with reference to an 

appropriate law of motion. 

Strategy: From Newton’s first law, it follows that if an object is at rest or 

moving at constant velocity, then the forces on it must be balanced. 

 

5. Fig. 5.1 shows a sledge moving down a slope at constant velocity. 

The angle of the slope is 22°. 

 
The three forces acting on the sledge are weight, W, friction, F, and the 

normal reaction force, R, of the ground on the sledge. 

(a) With reference to an appropriate law of motion, explain why the sledge is 

moving at constant velocity. 

Solution: 

Because the sledge is moving at constant velocity, the resultant force must be 

zero. 

(b) The mass of the sledge is 4.5 kg. Calculate the component of W, 

(b) (i) parallel to the slope, 

(b) (ii) perpendicular to the slope, 

Solution:  

(i) parallel to the slope: 
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   0 0 0
1 sin 22 sin 22 (4.5 ) (9.81 / )sin 22 16.5W W mg kg N kg N    

0 0 0
2 cos22 sin 22 (4.5 ) (9.81 / )cos22 41W W mg kg N kg N    

1 16.5

(ii) Perpendicular to the slope 

 

(c) State the values of F and R. 

Solution: The sledge is in equilibrium (moving with constant velocity), thus 

the resultant force is zero. 

Therefore 

F W N 

2 41

 

R W N   

 

6. Considering a uniform metre rule balanced on a pivot at its centre, 

supporting weights  suspended from the rule on either side of the 

pivot (Fig. 6.1). 

1W and W2

1W 2W
1 1 2 2W d W d

1d 2d

 
Weight  provides an anticlockwise moment about the pivot = W1W 1d1. 

Weight  provides an anticlockwise moment about the pivot = W2W 2d2. 

For equilibrium, applying the principle of moments: 

1 1 2 2W d W d  
If now adding a third weight W3 on the same side of the weight W2 at the 

distance d3 to the pivot, and then adjust the distance d1 to 1d   to keep the 

rule rebalanced (Fig. 6.2). 

1W 2W

1d 
2d

3W

3d

 
Then  
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The sum of the clockwise moments = 3 3 2 2W d W d  

The sum of the anticlockwise moments =  '
1 1W d

'
1 1 3 3 2 2W d W d W d 

Applying the principle of moments:  

 

 

7. A child of weight 300N sits on a seesaw at a distance 1.5m from the pivot 

at the centre. The seesaw is balanced by a second child of weight 500 N, 

calculate the distance of the second child from the pivot, and the support 

force N by the pivot. 

 
Strategy: 

For equilibrium, 

The sum of the clockwise moments = the sum of the anticlockwise moments 

Answers: 

The sum of the clockwise moments = 500d 

The sum of the anticlockwise moments = 300 × 1.5 = 450Nm 

And 500d = 450 

d = 0.9m 

The net external force must be zero 

    0F 


Choose the upwards as the positive direction 

Then, N + (-300) + (-500) = 0 

      N=800N 

 

8. A ladder of length of 10m is placed against the wall at an angle of 30°, 

weight of the ladder is 100N, the ladder is in equilibrium, calculate the 

frictional force f and the support force N and S? 
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Strategy: the ladder is in equilibrium, then  

 the net external force must be zero⒈  

0

0 0X y

F

F and F



 

 



 

 the net external torque must be zero⒉  

0   

Solutions: 

0

0 0X y

F

F and F



 

 



 

Gives 
( ) 0f S f     S

N

 

( ) 0 100N mg N mg       

Choose O as the axis of rotation  

And , so 0 
The sum of the clockwise moments = the sum of the anticlockwise moments 

N and f do not produce turning effect about O, so  

The sum of the clockwise moments = mg×B 

5cos30 =4.3moB   

The sum of the clockwise moments = mg×B = 100×4.3 = 430Nm 

The sum of the anticlockwise moments = S×A 

10sin 30 5oA m   

The sum of the anticlockwise moments = S×A = 5S 

So  
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5S=430Nm     S=86N 

Then 86f S N   

 

9. A uniform metre rule supports a 2N weight at its 50mm mark. The rule is 

balanced horizontally on a horizontal knife-edge at its 400mm mark (Fig. 

9.1). Sketch the arrangement and calculate the weight of the rule. 

1W 0W

 
O: is the centre of the gravity. 

Strategy: 

For equilibrium, 

The sum of the clockwise moments = the sum of the anticlockwise moments 

The sum of the clockwise moments =  3
0 0W 100 10 0.1D W W     0

The sum of the anticlockwise moments =  3
1 2 350 10 0.7W d Nm    

And  0 00.1 0.7 7W W N  

 

10. A uniform beam of weight 230N and of length 10m rests horizontally on 

the tops of two brick walls, 8.5m apart, such that a length of 1.0m projects 

beyond one wall and 0.5m projects beyond the other wall (Fig. 10.1). 

   Calculate: 

   a: the support force of each wall on the beam 

   b: the force of the beam on each wall. 
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Strategy: the beam keeps rest on the wall, for equilibrium 

 the net external force must be zero⒈  

    
0

0 0X y

F

F and F



 

 



 the net external torque must be zero⒉  

    0 
Solutions: 

0F 


 

So, S1 + S2 + (-W) = 0, rearranging: S1 + S2= W = 230N……① 

0   

Choose the point O as the axis, then  

4S1=4.5S2 …… ② 

From equation  we get S② 1 = 1.125 S2 

And S1 + S2 = 230N  

So, it can be gained that: 

1.125 S2 + S2 = 230N     S2 = 108N 

S1 = 230 – 108 = 122N 

b: 122N at the 1.0m end and 108N at the other end, both vertically 

downwards. 

 

11. (a) State the principle of moments. 

(b) (i) Draw a labeled diagram of the apparatus you would use to verify the 
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principle of moments. 

(ii) Describe the procedure that would be used and state what measurements 

are taken. 

You may be awarded marks for the quality of written communication in your 

answer. 

(iii) Explain how the results would be used to verify the principle of 

moments. 

Memos and answers: 

Considering the moments of the forces about any point, for equilibrium, 

The sum of the clockwise moments = the sum of the anticlockwise moments; 

This statement is known as the principle of moments. 

Diagram to verify: 

Considering a uniform metre rule balanced on a pivot at its centre, supporting 

weights  suspended from the rule on either side of the pivot (Fig. 

11.1). 

1W and W2

1W 2W
1 1 2 2W d W d

1d 2d

 
Weight  provides an anticlockwise moment about the pivot = W1W 1d1. 

Weight  provides an anticlockwise moment about the pivot = W2W 2d2. 

Move W1 and W2 till the metre is in equilibrium, measure the distance d1 and 

d2, change the weight, repeat the process above. 

For equilibrium, applying the principle of moments: 

1 1 2 2W d W d  
 

12. (a) Define the moment of a force. 

Answers: The moment of a force about any point is defined as the force 

× the perpendicular distance from the line of action of the force to the point. 

Thus, the moment of the force = F × d 

(b) Fig. 12.1 shows a uniform diving board of weight, W, that is fixed at A. 

The diving board is supported by a cylinder at C, which exerts an upward 
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force, P, on the board. 

(i) 

By considering moments about A, explain why the force P must be greater 

than the weight of the board, W. 

  Answers: if the board is in balance, then the sum of the clockwise 

moments (W × AD) = the sum of the anticlockwise moments (P × AC). 

Because AC is less than AD, the force P must be greater than the weight of 

the board, W. 

(ii) State and explain what would be the effect on the force P of a girl 

walking along the board from A to B. 

Answers: the force P must increase, since the moment of the girl’s weight 

about the pivot A increases as the distance increases from A to B. so when 

the girl at A the force P is a minimum value, and at B, the force has a 

maximum value. 

 

13. (a) Define the moment of a force about a point. 

The moment of a force about any point is defined as the force × the 

perpendicular distance from the line of action of the force to the point. 

That is: 

The moment of the force = F × d 

Note: d is the line of action of the force to the point.  

Unit of the moment of the force: Newton metre (Nm) 

(b) Fig. 13.1 shows a trailer attached to the towbar of a stationary car. The 

weight of the trailer is 1800 N and is shown acting through its centre of 

gravity. F is the force exerted by the towbar on the trailer. FR is the total 
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normal reaction force experienced by the trailer. When stationary all forces 

acting on the trailer are vertical. 

Fig. 13.1
 

(i) Explain what is meant by centre of gravity. 

  Center of Gravity: 

The point on the object that no turning effect produced by the force of the 

gravity. 

 

(ii) Calculate the force, F, exerted by the towbar on the trailer. 

   Strategy: the system is in equilibrium, 

  ⒈ the net external force must be zero 

    
0

0 0X y

F

F and F



 

 



0 

1800RF F 

(2.5 0.35) 0.35 RF F

⒉ the net external torque must be zero 

    

So  
   

   And choose the centre of gravity as the pivot,   

1548 252RF N F N    From the above two equation,  

1548RF N

(iii) Calculate FR. 

    From (ii) 

(c) The car starts to move forwards. State and explain what happens to the 

magnitude and direction of force, F. 

You may be awarded marks for the quality of written communication in your 
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answer. 

Answers: the force must have a horizontal component, so the force increases 

in magnitude and act at an angle to the vertical. 

 

14. Fig. 14.1 shows a supermarket trolley. 

Fig. 14.1
 

The weight of the trolley and its contents is 160 N. 

(a) Explain what is meant by centre of gravity. 

Center of Gravity: 

The point on the object that no turning effect produced by the force of the 

gravity. 

(b) P and Q are the resultant forces that the ground exerts on the rear wheels 

and front wheels respectively. Calculate the magnitude of 

(i) Force P, 

(ii) Force Q. 

   Strategy: Condition for equilibrium: 

⒈ the net external force must be zero 

    
0

0 0X y

F

F and F



 

 



⒉ the net external torque must be zero 
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    0 
So P + Q = weight = 160 N … equation ① 

And choose the centre of the gravity as the pivot,  

P × 40 = Q × 50 … equation ② 

From equation ① and ②, P = 71 N, Q = 89 N. 

(c) Calculate the minimum force that needs to be applied vertically at A to lift 

the front wheels off the ground. 

Strategy: the minimum force to lift the front wheels off the ground means the 

force Q is equal to zero. 

So let the force applied at A as R, and choose the force P as the pivot, 

R × 10 = weight × 40 = 160×40, so R = 640 N. 

(d) State and explain, without calculation, how the minimum force that needs 

to be applied vertically at A to lift the rear wheels off the ground compares to 

the force you calculated in part (c). 

You may be awarded marks for the quality of written communication in your 

answer. 

Answers: The force now needed is less than that to lift the front wheels, 

because the distance to the pivot increases now. Then smaller force causes 

larger moment. 

 

15. Figure 15.1 shows an apparatus used to locate the centre of gravity of a 

non-uniform metal rod. 

Fig. 15.1
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The rod is supported horizontally by two wires, P and Q and is in 

equilibrium. 

(a) State two conditions that must be satisfied for the rod to be in equilibrium. 

Solution: 

Condition for equilibrium: 

⒈ the net external force must be zero 

    
0

0 0X y

F

F and F



 

 



⒉ the net external torque must be zero 

    0 
 

(b) Wire Q is attached to a newtonmeter so that the force the wire exerts on 

the rod can be measured. The reading on the newtonmeter is 2.0 N and the 

weight of the rod is 5.0 N. 

Calculate 

(i) The force that wire P exerts on the rod, 

Solution: 

The net external force must be zero, thus P = 5.0 – 2.0 = 3.0 N. 

(ii) The distance d. 

Solution: 

Choose the centre of the rod as the pivot, therefore 

(90 )P d Q d     gives 

3 2 (90 )d d     

d = 36 cm 

 

16. (a) Define the moment of a force. 

Solution: 

The moment of a force about any point is defined as the force × the 

perpendicular distance from the line of action of the force to the point. 

That is: 

      The moment of the force = F × d 

Note: d is the line of action of the force to the point.  

Unit of the moment of the force: Newton metre (Nm) 
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(b) Fig. 16.1 shows the force, F, acting on a bicycle pedal. 

 
(i) The moment of the force about O is 46 Nm in the position shown. 

Calculate the value of the force, F. 

Solution: 

It can be calculated that 
00.25 cos 40 46F     

Gives  

0

46
240

0.25 cos 40
F N 


 

(ii) Force, F, is constant in magnitude and direction while the pedal is moving 

downwards. State and explain how the moment of F changes as the pedal 

moves through 80°, from the position shown. 

Solution: 

The angle decreases to zero, and then increasing from zero to 40°. 

Thus, the perpendicular distance increases to a maximum value, and then 

decreasing again. At the same time, the force is constant in magnitude and 

direction. 

Therefore, the moment increases to a maximum value when shaft is 

horizontal and then decreases. 

 

17. Figure 17.1 shows two of the forces acting on a uniform ladder resting 

against a smooth vertical wall. 
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Fig. 17.1

P

150 
N

Q

A

B
 

The ladder is 6.0 m long and has a weight of 150 N. The horizontal force, P, 

exerted on the ladder by the wall is 43 N. Force Q (not shown) is the force 

the ground exerts on the ladder at B. 

(a) Explain why the force, Q must have 

(i) a vertical component, 

(ii) a horizontal component. 

Solution: 

The ladder is keeping rest, thus the resultant force acting on the ladder must 

be zero. 

Therefore, there must be a vertical component force of Q to balance the 

weight, a horizontal component force of Q to balance the force P. 

(b) Draw an arrow on the diagram to represent the force Q. 

(c) State the 

(i) Horizontal component of Q, 

(ii) Vertical component of Q. 

Solution: 

(i) From (a), the horizontal component of Q equals to force P, whose value is 

43 N. 

(ii) The vertical component of Q equals to weight, whose value is 150 N. 

(d) State and explain the effect on force Q if a person stands on the bottom of 

the ladder and the direction of P is unchanged. 

You may be awarded additional marks to those shown in brackets for the 

quality of written communication in your answer. 

Solution: 

Force Q increases in magnitude, since the vertical component of force 

increases. And the direction of Q moves closer to vertical. 
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18. (a) State the principle of moments. 

Solution: 

For a body in equilibrium, 

The sum of the clockwise moments=the sum of the anticlockwise moments; 

This statement is known as the principle of moments. 

Fig. 18.1 shows a child’s mobile in equilibrium. 

Fig. 18.1
 

A piece of cotton thread is attached to the rod supporting objects A and B and 

another piece of cotton thread supports the rod holding objects C and D. The 

tension in the cotton threads is T and all the rods are horizontal. 

(b) (i) Complete the following table assuming the weights of the rods are 

negligible. 
Weight of object 

A/N 

Weight of object 

B/N 

Weight of object 

C/N 

Weight of object 

D/N 

0.40   0.10 

Solution: 

By the principle of moments: 

0.06 0.06A BW W   0.40BW N, gives . 

And 

A B C DW W W W  

0.4 0.4 0.1 CW   0.7CW N

 

Thus , gives . 

(ii) Calculate the distance, d. 
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Solution: 

By the principle of moments: 

(0.7 ) (0.10 ) (0.08 )N d N m 

0.4 0.4 0.8A BT W W N    

 

Thus, d = 0.011 m. 

(iii) Calculate the magnitude of T. 

Solution: 

 

(c) Object A becomes detached and falls to the ground. State and explain the 

initial effect on 

(i) The rod holding objects A and B, 

Solution: 

The beam holding B turns clockwise. 

(ii) The rod holding objects C and D, 

Solution: 

The rod falls. 

(iii) The rod closest to the top of the mobile. 

Solution: 

The beam rotates clockwise due to because of the unbalanced moment. 

 

19. (a) State the principle of moments for a body in equilibrium. 

Solution: 

Considering the moments of the forces about any point, for equilibrium, 

The sum of the clockwise moments=the sum of the anticlockwise moments; 

This statement is known as the principle of moments. 

(b) Fig. 19.1 shows a vertical force, F, being applied to raise a wheelbarrow 

which has a total weight of 500 N. 

 
(i) On Fig. 19.1 draw an arrow to represent the position and direction of the 
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force, R, exerted by the ground on the wheel. 

(ii) Calculate the minimum value of the vertical force, F, needed to raise the 

legs of the wheelbarrow off the ground. 

Solution: 

(ii) From figure 1, when  min (1.5 ) (500 ) 0.7F m N m  

   The legs of the wheelbarrow are raised off the ground. 

   min

(500 ) 0.7
233

1.5

N m
F N

m


 

min 500 500 233 267F R N R N     

 

(iii) Calculate the magnitude of R when the legs of the wheelbarrow have just 

left the ground. 

Solution: 

For the wheelbarrow, the resultant force is zero now: 
 

 

20. (a) (i) State two conditions necessary for an object to be in equilibrium. 

 (a) (ii) For each condition state the consequence if the condition is not met. 

(i) Condition for equilibrium: 

 the net external force must be zero⒈  

    
0

0 0X y

F

F and F



 

 



 the net external torque must be zero⒉  

    0 
(ii) If the net external force is not zero, there will be acceleration. 

   If the net external torque is not zero, the object would rotate with angular 

acceleration. 

 

Fig. 20. 1 shows a pole vaulter holding a uniform pole horizontally. He keeps 

the pole in equilibrium by exerting an upward force, U, with his leading hand, 

and a downward force, D, with his trailing hand. 
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Weight of pole = 200 N 

Length of pole = 3.7 m 

1 (b) Calculate for the situation shown in Fig. 20.1, 

1 (b) (i) the force, U, 

1 (b) (ii) the force, D. 

Solutions: 

The pole is in equilibrium, thus the net external force and the net external 

torque must be zero. 

Therefore 

200U D N 

1.1 (200 ) 1.85U m N m  

200U D N

…… (1) 

Choose the point A as the pivot, then 

…… (2) 

Form equation (1) and (2), we get 

U = 336.4 N 

D = 136.4 N 

(c) Explain the effect on the magnitudes of U and D if the vaulter moves his 

leading hand closer to the centre of gravity of the pole and the pole is still in 

equilibrium. 

You may be awarded additional marks to those shown in brackets for the 

quality of written communication in your answer. 

Solution: 

When the vaulter moves his leading hand closer to the centre of gravity of the 

pole, the perpendicular distance to the pivot is increased. So the force U 

decreases. And , thus the change in D is consistent with U.  
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21. Fig. 21.1 shows a motorcycle and rider. The motorcycle is in contact with 

the road at A and B. 

Fig. 21.1
 

The motorcycle has a weight of 1100 N and the rider’s weight is 780 N. 

(a) State the principle moments. 

Solution: 

For equilibrium, 

The sum of the clockwise moments = the sum of the anticlockwise moments; 

This statement is known as the principle of moments. 

 

(b) Calculate the moment of the rider’s weight about B. give an appropriate 

unit. 

Solution: 

The moment of a force about any point is defined as the force × the 

perpendicular distance from the line of action of the force to the point. 

That is: 

      The moment of the force = F × d 

Note: d is the line of action of the force to the point.  

Unit of the moment of the force: Newton metre (Nm) 

Therefore, 

The moment of the weight about B = 780×0.35 = 273 Nm 

(c) By taking the moments about B, calculate the vertical force that the road 

exerts on the front tyre at A. state your answer to an appropriate number of 
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significant figures. 

Solution: 
The sum of the clockwise moments 1.3AN 

The sum of the anticlockwise moments 1100 0.60 780 0.35 933N m

 

     

1.3 933AN  

 

For equilibrium: 
 

933
718

1.3AN N 

1880 718 1162BN N  

 

(d) Calculate the vertical force that the road exerts on the rear tyre at B. 

Solution: 

The net external force must be zero. 

Thus 
718 1100 780 1880BN     

 

(e) The maximum power of the motorcycle is 7.5 kW and it has a maximum 

speed of , when travelling on a level road. 26 /m s

Calculate the total horizontal resistive force for this speed. 

Solution: 

Power and velocity 

 
Above, the car’s engine provides a forward force F which balances the total 

frictional force on the car. As a result, the car maintains a steady velocity v. 

the displacement of the car is s in time intervals t . P is the power being 

delivered to the wheels. 

So the work done (by F) = Fs 
work done Fs

power P
timetaken t

  


 

But 
s

v
t




 

So  P Fv

Therefore, at its maximum speed, the resistive force is given by 
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37.5 10
288.5

26

P
F N

v


    

 

22. A cylindrical tank for water ( 31000 /kg m  ) is 3 m long and 1.5 m in 

diameter. How many kilograms of water will the tank hold? 

Solution: 

First we find the volume: 
2

2 31.5
3.14 3 5.3

2
V r h m       

 
 

Substituting the volume and mass density into m V , we obtain 

  3 3 31000 / 5.3 5.3 10m V kg m m k    g  

 

23. A lady of weight 495 N, standing on the ground with the contact area of 

412 cm 2. 

(i) What is the pressure of her shoes to the ground? 

(ii) now she stands on the ground on one foot, what is the pressure？ 

Strategy:  

 
(i) F = 495 N, S1 = 412 cm 2 = 0.0412 m 2 

  4
1

495
1.2 10

0.0412
P Pa    

(ii) F = 495 N, S2 = 412/2 cm 2 = 0.0206 m 2 

  4
2

495
2.4 10

0.0206
P Pa    
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Chapter 3 Car safety 

3.1. Stopping distance 

Traffic accidents often happen because vehicles are being driven too fast and 

too close. A driver needs to maintain a safe distance between his or her own 

vehicle and the vehicle in front. If a vehicle suddenly brakes, the driver of the 

following vehicle needs to brake as well to avoid a crash. 

Thinking distance: is the distance traveled by a vehicle in the time it takes the 

driver to react. So for a vehicle moving at constant speed v, the thinking 

distance S1 = speed × reaction time = u t，where t is the reaction time of the 

driver. 

So the thinking distance is affected by the car’s speed and the driver’s 

reaction time; and the reaction time is affected by tiredness, alcohol and 

drugs and distractions. 

 

Braking distance: is the distance traveled by a car in the time it takes to stop 

safely, from when the brakes are first applied. Assuming constant 

deceleration, a, and from initial speed u to zero speed. 

So the braking distance, 
2

2S
2

u

a
  

Braking distance is affected by the car’s speed, road conditions (icy, wet) and 

car conditions (tyres, brakes). 

Stopping distance:  

Stopping distance = thinking distance + braking distance =
2

2

u
ut

a
  

 

3.2. Car safety 

(i) Impact force 

  The effect of a collision on a vehicle can be measured in terms of the 

acceleration or deceleration of the vehicle. By expressing an acceleration or 

deceleration in terms of g, the acceleration due to gravity, the force of the 

impact can then easily be related to the weight of the vehicle. For example, 

suppose a vehicle hits a wall and its acceleration is 230ms . In terms of g, the 

acceleration = －3g. So the impact force of the wall on the vehicle must have 
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been 3 times its weight (= 3mg, where m is the mass of the vehicle). Such an 

impact is sometimes described as being ‘equal to 3g’. This statement, 

although technically wrong because the acceleration not he impact force is 

equal to 3g, is a convenient way of expressing the effect of an impact on a 

vehicle or a person. 

 

(ii) Contact time and impact time 

When objects collide and bounce off each other, they are in contact with each 

other for a certain time, which is the same for both objects. The shorter the 

contact time, the greater the impact force for the same initial velocities of the 

two objects. When two vehicles collide, they may or may not separate from 

each other after the collision. If they remain tangled together, they exert 

forces on each other until they are moving at the same velocity. The duration 

of the impact force is not the same as the contact time in this situation. 

The impact time, t, (the duration of the impact force) can be worked out by 

applying the equation 1
( )

2
s u v t   to one of the vehicles, where s is the 

distance moved by that vehicle during the impact, u is its initial velocity and 

v is its final velocity. If the vehicle mass is known, the impact force can also 

be calculated. 

For a vehicle of mass m in time t, 

2
,

s
the impact time t

u v


  

,
v u

the acceleration a
t




,the impact force F ma

 

 

 

For example, suppose a 1000kg vehicle moving at 120ms  slows down in a 

distance of 4.0 m to a velocity of 112ms , as a result of hitting a stationary 

vehicle. Rearranging the above equation gives 
2 2 4

0.25
20 12

s
t s

u v


  

 
 

The acceleration, 212 20
32 3.3

0.25

v u
a ms g

t
 

       

(Where g = 9.8 m s -2) 
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The impact force F = ma = 1000 × (-32) = -32000N. 

 

Note: the work done by the impact force F over an impact distance s (= Fs) is 

equal to the change of kinetic energy of the vehicle, the impact force can also 

be worked out using the equation 

tan

change of kinetic energy
F

impact dis ce
  

 

(iii) Car safety features 

 
Vehicle bumpers: gives way a little in a low-speed impact and so increase the 

impact time. The impact force is therefore reduced as a result. If the initial 

speed of impact is too high, the bumper and/or the vehicle chassis are likely 

to be damaged. 

 

Crumple zones: the engine compartment of a car is designed to give way in a 

front-end impact. If the engine compartment were rigid, the impact time 

would be very short, so the impact force would be very large. By designing 

the engine compartment so it crumples in a front-end impact, the impact time 

is increased and the impact force is therefore reduced. 

 

Seat belts: in a front-end impact, a correctly-fitted seat belt restrains the 

wearer from crashing into the vehicle frame after the vehicle suddenly stops. 

The restraining force on the wearer is therefore much less than the impact 

force would be if the wearer hit the vehicle frame. With the seat belt on, the 

wearer is stopped more gradually than without it. 
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Air bags: an airbag reduces the force on a person, because the airbag acts as a 

cushion and increases the impact time on the person. More significantly, the 

force of the impact is spread over the contact area, which is greater than the 

contact area with a seat belt. So the pressure on the body is less. 

 

 

 

 

3.3  2 Worked examples 

1. A vehicle is traveling at a speed of 118ms  on a level road, when the driver 

sees a pedestrian stepping off the pavement into the road 45 m ahead. The 

driver reacts within 0.4 s and applies the brakes, causing the car to decelerate 

at . 24.8ms

a. calculate the thinking distance, braking distance and the stopping distance 

b. how far does the driver stop from where the pedestrian stepped into the 

road？ 

Strategy: the thinking distance S1 = speed×reaction time = u t，where t is the 

reaction time of the driver. 

The braking distance, 
2

2S
2

u

a
  

Stopping distance = thinking distance + braking distance =
2

2

u
ut

a


1 18 0.4 7.2S m

 

Answers:  

a. 
   

2 2

2

18
S 33.75

2 2 4.8

u
m

a
  


 

Stopping distance, S = S1 + S2 = 33.75 + 7.2 = 40.95 m 

 

b. the distance between the car and the pedestrian = 45－40.95 = 4.05 m 

 

2. a car of mass 1200 kg traveling at a speed of 15 m s -1 is struck from 

behind by another vehicle, causing its speed to increase to 19 m s -1 in a time 
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of 0.20 s. calculate: 

a. the acceleration of the car, in terms of g. 

b. the impact force on the car. 

Strategy: ,
v u

the acceleration a
t


 ,the impact force F ma,  

Answers: 219 15
20

0.2

v u
a ms

t
 

  

1200 20 24000F ma N   
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