Copyright © mppe.org.uk and its license. All Rights Reserved **NOTICE TO CUSTOMER:**

The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product is a violation of the law; your license of the product will be terminated at any moment if you are selling or distributing the products.

No parts of this book may be reproduced, stored in a retrieval system, of transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

- 1. Solve
 - (a) $5^x = 8$, giving your answers to 3 significant figures,

(3)

(b) $\log_2(x+1) - \log_2 x = \log_2 7$.

(3)

2. (a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1 + px)^{12}$, where p is a non-zero constant.

(2)

Given that, in the expansion of $(1 + px)^{12}$, the coefficient of x is (-q) and the coefficient of x^2 is 11q,

(b) find the value of p and the value of q.

(4)

3. A river, running between parallel banks, is 20 m wide. The depth, y metres, of the river measured at a point x metres from one bank is given by the formula

$$y = \frac{1}{10}x\sqrt{(20-x)}, \quad 0 \le x \le 20.$$

(a) Complete the table below, giving values of y to 3 decimal places.

x	0	4	8	12	16	20
у	0		2.771			0

(2)

(b) Use the trapezium rule with all the values in the table to estimate the cross-sectional area of the river.

(4)

Given that the cross-sectional area is constant and that the river is flowing uniformly at 2 m s⁻¹,

(c) estimate, in m³, the volume of water flowing per minute, giving your answer to 3 significant figures.

(2)

4. The function f is defined by

f:
$$x \mapsto \frac{5x+1}{x^2+x-2} - \frac{3}{x+2}$$
, $x > 1$.

(a) Show that $f(x) = \frac{2}{x-1}, x > 1$.

(4)

(b) Find $f^{-1}(x)$.

(3)

The function g is defined by

g:
$$x \mapsto x^2 + 5$$
, $x \in \mathbb{R}$.

(*b*) Solve $fg(x) = \frac{1}{4}$.

(3)

5. Figure 1

Figure 1 shows part of the curve C with equation $y = \frac{x+1}{x}$, x > 0.

The finite region enclosed by C, the lines x = 1, x = 3 and the x-axis is rotated through 360° about the x-axis to generate a solid S.

(a) Using integration, find the exact volume of S.

(7)

Figure 2

The tangent T to C at the point (1, 2) meets the x-axis at the point (3, 0). The shaded region R is bounded by C, the line x = 3 and T, as shown in Figure 2.

(b) Using your answer to part (a), find the exact volume generated by R when it is rotated through 360° about the x-axis.

(3)

$$f(x) = 3e^x - \frac{1}{2} \ln x - 2, \quad x > 0.$$

(a) Differentiate to find f'(x).

(3)

The curve with equation y = f(x) has a turning point at P. The x-coordinate of P is α .

(b) Show that $\alpha = \frac{1}{6}e^{-\alpha}$.

(2)

The iterative formula

$$x_{n+1} = \frac{1}{6} e^{-x_n}, \quad x_0 = 1,$$

is used to find an approximate value for α .

(c) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 decimal places.

(2)

(d) By considering the change of sign of f'(x) in a suitable interval, prove that $\alpha = 0.1443$ correct to 4 decimal places.

(2)

7. Figure 1

Figure 1 shows part of the graph of y = f(x), $x \in \mathbb{R}$. The graph consists of two line segments that meet at the point (1, a), a < 0. One line meets the x-axis at (3, 0). The other line meets the x-axis at (-1, 0) and the y-axis at (0, b), b < 0.

In separate diagrams, sketch the graph with equation

(a)
$$y = f(x + 1)$$
, (2)

(b)
$$y = f(|x|)$$
. (3)

Indicate clearly on each sketch the coordinates of any points of intersection with the axes.

Given that f(x) = |x-1| - 2, find

(c) the value of a and the value of b,

(2)

(*d*) the value of *x* for which f(x) = 5x.

(4)

8. (a) Given that $2 \sin(\theta + 30)^{\circ} = \cos(\theta + 60)^{\circ}$, find the exact value of $\tan \theta^{\circ}$.

(5)

(b) (i) Using the identity $\cos (A + B) \equiv \cos A \cos B - \sin A \sin B$, prove that

$$\cos 2A = 1 - 2\sin^2 A. \tag{2}$$

(ii) Hence solve, for $0 \le x < 2\pi$,

$$\cos 2x = \sin x$$
,

giving your answers in terms of π .

(5)

(iii) Show that $\sin 2y \tan y + \cos 2y \equiv 1$, for $0 \le y < \frac{1}{2} \pi$.

(3)

TOTAL FOR PAPER: 75 MARKS

END

1. Find the values of x for which

$$5\cosh x - 2\sinh x = 11,$$

giving your answers as natural logarithms.

(6)

- 2. The point S, which lies on the positive x-axis, is a focus of the ellipse with equation $\frac{x^2}{4} + y^2 = 1$. Given that S is also the focus of a parabola P, with vertex at the origin, find
 - (a) a cartesian equation for P,

(4)

(b) an equation for the directrix of P.

(1)

3. The radius of curvature of a curve C, at any point on C, is $e^{\sin \psi} \cos \psi$, where ψ is the angle between the tangent to C at P and the positive axis, and $0 \le \psi \le \frac{\pi}{2}$.

Taking s = 0 at $\psi = 0$, find an intrinsic equation for C.

(4)

4. The curve *C* has equation $y = \arctan x^2$, $0 \le y < \frac{\pi}{2}$.

Find, in surd form, the value of the radius of curvature of C at the point where x = 1.

(6)

5. The curve with equation

$$y = -x + \tanh 4x$$
, $x \ge 0$,

has a maximum turning point A.

(a) Find, in exact logarithmic form, the x-coordinate of A.

(4)

(b) Show that the y-coordinate of A is $\frac{1}{4} \{2\sqrt{3} - \ln(2 + \sqrt{3})\}$.

(3)

6. Figure 1

The curve C, shown in Figure 1, has parametric equations

$$x = t - \ln t,$$

$$y = 4\sqrt{t}, \qquad 1 \le t \le 4.$$

(a) Show that the length of C is $3 + \ln 4$.

(7)

The curve is rotated through 2π radians about the *x*-axis.

(b) Find the exact area of the curved surface generated.

(4)

7.

Figure 2 shows a sketch of part of the curve with equation

$$y = x^2 \operatorname{arsinh} x$$
.

The region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line x = 3.

Show that the area of R is

9 ln
$$(3 + \sqrt{10}) - \frac{1}{9}(2 + 7\sqrt{10})$$
. (10)

8.

$$I_n = \int x^n \cosh x \, dx, \quad n \ge 0.$$

(a) Show that, for $n \ge 2$,

$$I_n = x^n \sinh x - nx^{n-1} \cosh x + n(n-1)I_{n-2}.$$
 (4)

(b) Hence show that

$$I_4 = f(x) \sinh x + g(x) \cosh x + C$$

where f(x) and g(x) are functions of x to be found, and C is an arbitrary constant.

(5)

(c) Find the exact value of $\int_0^1 x^4 \cosh x \, dx$, giving your answer in terms of e.

(3)

- **9.** The ellipse *E* has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line *L* has equation y = mx + c, where m > 0 and c > 0.
 - (a) Show that, if L and E have any points of intersection, the x-coordinates of these points are the roots of the equation

$$(b^2 + a^2m^2)x^2 + 2a^2mcx + a^2(c^2 - b^2) = 0.$$
(2)

Hence, given that L is a tangent to E,

(b) show that
$$c^2 = b^2 + a^2 m^2$$
. (2)

The tangent L meets the negative x-axis at the point A and the positive y-axis at the point B, and O is the origin.

- (c) Find, in terms of m, a and b, the area of triangle OAB. (4)
- (d) Prove that, as m varies, the minimum area of triangle OAB is ab.

 (3)
- (e) Find, in terms of a, the x-coordinate of the point of contact of L and E when the area of triangle OAB is a minimum.(3)

TOTAL FOR PAPER: 75 MARKS

END

Leave blank

(a) Express $\frac{1}{r(r+2)}$ in partial fractions.	(1)
(b) Hence show that $\sum_{r=1}^{n} \frac{4}{r(r+2)} = \frac{n(3n+5)}{(n+1)(n+2)}.$	(5)

http://www.mppe.org.uk Leave blank Question 1 continued

(Total 6 marks)

Q1

Leave blank

Solve the equation	
$z^3 = 4\sqrt{2} - 4\sqrt{2}i,$	
giving your answers in the form $r(\cos \theta + i \sin \theta)$, where $-\pi < \theta \le \pi$.	(6)

stion 2 continued	

Leave blank

$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} - y \cos x = \sin 2x \sin x,$	
giving your answer in the form $y = f(x)$.	(8)

http://www.mppe.org.uk blank Question 3 continued

Q3

(Total 8 marks)

Leave blank

4.

Figure 1

Figure 1 shows a sketch of the curve with polar equation

$$r = a + 3\cos\theta$$
, $a > 0$, $0 \le \theta < 2\pi$

The area enclosed by the curve is $\frac{107}{2}$ π .

Find the value of *a*.

(8)

Question 4 continued	Leave blank

estion 4 continued		

http://www.mppe.org.uk blank Question 4 continued

(Total 8 marks)

Q4

$y = \sec^2 x$
(a) Show that $\frac{d^2y}{dx^2} = 6\sec^4 x - 4\sec^2 x$.
(4)
(b) Find a Taylor series expansion of $\sec^2 x$ in ascending powers of $\left(x - \frac{\pi}{4}\right)$, up to and
including the term in $\left(x - \frac{\pi}{4}\right)^3$.
(6)

Question 5 continued	ы

uestion 5 continued		

http://www.mppe.org.uk Leave blank Question 5 continued

(Total 10 marks)

Q5

Leave	
blank	

•	A transformation T from the z -plane to the w -plane is given by	
	$w = \frac{z}{z+i}, z \neq -i$	
	The circle with equation $ z = 3$ is mapped by T onto the curve C .	
	(a) Show that C is a circle and find its centre and radius.	(8)
	The region $ z < 3$ in the z-plane is mapped by T onto the region R in the w-plane.	
	(b) Shade the region <i>R</i> on an Argand diagram.	(2)
_		

Question 6 continued	blan

uestion 6 continued	

http://www.mppe.org.uk blank Question 6 continued **Q6**

(Total 10 marks)

L	eav	/e
h	lan	k

7. (a) Sketch the graph of $y = |x^2 - a^2|$, where a > 1, showing the coordinates of the points where the graph meets the axes.

(2)

(b) Solve $|x^2 - a^2| = a^2 - x$, a > 1.

(6)

(c) Find the set of values of x for which $|x^2 - a^2| > a^2 - x$, a > 1.

(4)

Question 7 continued	Leave blank

http://www.mppe.org.uk Leave blank Question 7 continued

Copyright © mppe.org.uk and its license. All Rights Reserved

(Total 12 marks)

Q7

Leave blank

8.

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 5\frac{\mathrm{d}x}{\mathrm{d}t} + 6x = 2\mathrm{e}^{-t}$$

Given that x = 0 and $\frac{dx}{dt} = 2$ at t = 0,

(a) find x in terms of t.

(8)

The solution to part (a) is used to represent the motion of a particle P on the x-axis. At time t seconds, where t > 0, P is x metres from the origin O.

(b) Show that the maximum distance between O and P is $\frac{2\sqrt{3}}{9}$ m and justify that this distance is a maximum.

(7)

lank

http://www.mppe.org.uk

blank

http://www.mppe.org.uk blank Question 8 continued **Q8** (Total 15 marks) **TOTAL FOR PAPER: 75 MARKS**

END

mock papers 4

		Leave blank
1. (a) Express $\frac{3}{(3r-1)(3r+2)}$ in partial fractions.		
(3r-1)(3r+2)	(2)	
(b) Using your answer to part (a) and the method of differences, show that		
$\sum_{r=1}^{n} \frac{3}{(3r-1)(3r+2)} = \frac{3n}{2(3n+2)}$		
$\sum_{r=1}^{\infty} (3r-1)(3r+2)$ $2(3n+2)$	(3)	
(c) Evaluate $\sum_{r=100}^{1000} \frac{3}{(3r-1)(3r+2)}$, giving your answer to 3 significant figures.		
r=100 (3I-1)(3I+2)	(2)	

Question 1 continued		Leave blank
		Q1
	(Total 7 marks)	

		Leave blank
2.	The displacement x metres of a particle at time t seconds is given by the differential equation	Omin
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + x + \cos x = 0$	
	When $t = 0$, $x = 0$ and $\frac{dx}{dt} = \frac{1}{2}$.	
	Find a Taylor series solution for x in ascending powers of t , up to and including the term in t^3 .	
	(5)	

Question 2 continued	
	Q

	L
3. (a) Find the set of values of x for which	
$x+4 > \frac{2}{x+3}$	
x+3	(6)
(b) Deduce, or otherwise find, the values of x for which	
$x+4 > \frac{2}{ x+3 }$	(1)

Question 3 continued	L b
	Q3

$z = -8 + (8\sqrt{3})i$	
(a) Find the modulus of z and the argument of z .	(3)
Using de Moivre's theorem,	
(b) find z^3 ,	(2)
(c) find the values of w such that $w^4 = z$, giving your	answers in the form $a + ib$, where
$a,b\in\mathbb{R}$.	(5)

Question 4 continued	L b

Leave blank

5.

Figure 1

Figure 1 shows the curves given by the polar equations

$$r=2, \qquad \qquad 0\leqslant \theta\leqslant \frac{\pi}{2} \ ,$$
 and
$$r=1.5+\sin 3\theta, \qquad 0\leqslant \theta\leqslant \frac{\pi}{2} \ .$$

(a) Find the coordinates of the points where the curves intersect.

(3)

The region S, between the curves, for which r > 2 and for which $r < (1.5 + \sin 3\theta)$, is shown shaded in Figure 1.

(b) Find, by integration, the area of the shaded region S, giving your answer in the form $a\pi + b\sqrt{3}$, where a and b are simplified fractions.

(7)

Leave	
blank	

- **6.** A complex number z is represented by the point P in the Argand diagram.
 - (a) Given that |z-6|=|z|, sketch the locus of P.

(2)

(b) Find the complex numbers z which satisfy both |z-6| = |z| and |z-3-4i| = 5.

(3)

The transformation T from the z-plane to the w-plane is given by $w = \frac{30}{z}$.

(c) Show that T maps |z-6|=|z| onto a circle in the w-plane and give the cartesian equation of this circle.

(5)

Question 6 continued	Leave blank

Question 6 continued	Leave blank

Question 6 continued	Lea bla
(Total 10 marks)	Q

		Leave olank
7. (a) Show that the transformation $z = y^{\frac{1}{2}}$ transforms the diff	Ferential equation	
dy		
$\frac{\mathrm{d}y}{\mathrm{d}x} - 4y\tan x = 2y^{\frac{1}{2}} \qquad (\mathrm{I})$		
into the differential equation		
$\frac{\mathrm{d}z}{\mathrm{d}x} - 2z\tan x = 1 \tag{II}$		
$\mathrm{d}x$	(5)	
(b) Solve the differential equation (II) to find z as a function		
	(6)	
(c) Hence obtain the general solution of the differential eq	uation (1).	

Question 7 continued	Leave blank

Question 7 continued	Leave blank

Question 7 continued	

•	(a)	equation	ifferential
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 25y = 3\cos 5x$	(4)
	(b)	Using your answer to part (a), find the general solution of the differential e	quation
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 25y = 3\cos 5x$	(3)
	Giv	wen that at $x = 0$, $y = 0$ and $\frac{dy}{dx} = 5$,	
	(c)	find the particular solution of this differential equation, giving your solut form $y = f(x)$.	ion in the
			(5)
	(d)	Sketch the curve with equation $y = f(x)$ for $0 \le x \le \pi$.	(2)
_			
_			

Question 8 continued	Leave blank

Question 8 continued		Le bla
<u> </u>		
	(Total 14 marks)	
	TOTAL FOR PAPER: 75 MARKS	1