Version 1.0

General Certificate of Education (A-level) June 2011

Statistics

SS06

(Specification 6380)

Statistics 6

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a) (i)	Each child <u>was allocated</u> to take the amoxicillin or the placebo in a <u>random</u> manner, as if by chance alone.	E1		Need idea of <u>allocation to</u> <u>drug/treatment</u> Disallow 'same chance' unless ref to being allocated Allow 'allocated with no pattern' or 'no order'
(ii)	A harmless substance that looks like real medication but <u>does not contain</u> any drug.	E1		Allow 'has no effect', 'fake' treatment, 'looks same but doesn't do same thing'
(iii)	Neither the medical staff involved nor the children and their parents know whether the child is receiving the amoxicillin or the placebo.	E1	3	Must make clear that neither group knows <u>which</u> <u>treatment</u>
(b) (i)	To avoid parents/children <u>anticipating</u> a slow recovery simply because no drug treatment is offered. All children will appear to be taking the same medication if the placebo is used.	E1		(b) answers <u>do not need</u> to be in context of this trial Child/parent 'Not knowing' which drug so won't know what to expect.
(ii)	To <u>avoid expections</u> by children and parents or by medical staff, of success/failure of the treatment <u>outcome</u> due to a knowledge of whether an active drug or a placebo was given, influencing the outcome.	E1	2	Doctors and child/parent have no particular expectations due to knowledge of treatment Disallow 'Fair', 'reduces bias', 'reduces experimental error'
	Total		5	

Q	Solution	Marks	Total	Comments
2 (a)	H_o pop mean diff $\mu_d = 0$			Condone μ or population
	H_1 pop mean diff $\mu_d < 0$ 1 tail 5%			mean/average Condone explained in words ref to average price/difference or pop average allow $\mu_d > 0$ if consistent
	d = Yorks - Surrey A B C D E d -10.09 -1.63 1.35 -1.13 -2.67 F G H I d 3.75 -8.23 -11.43 1.23	B1		H ₁ must be consistent with their differences
	$\overline{d} = -3.21 s = 5.43 n = 9$	M1		Differences – either way
	$t = \frac{-3.21 - 0}{5.43/9} = -1.77$	m1		attempt to find \overline{d} , s
	/ \\ 7	M1		Use of $\frac{s}{\sqrt{9}}$ ft
		m1		Method for t ft
	df = 8 $ cv = 1.86$	A1		(±) 1.77 (1.7 – 1.8) (±) 1.77 no method 5 marks
	1.77 < 1.86 oe	B1 B1		df
	Accept H_0 +/+ and -/- comp only No significant evidence to suggest that mean prices are lower in Yorkshire.	A1	9	for <u>correct cv</u> or $p = 0.115$ correct <u>conclusion in context</u> need ts/cv both correct
(b)(i)	(Differences between average prices for Yorkshire and Surrey are) <u>normally</u> <u>distributed.</u>	E1	1	Allow <u>random and normally</u> dist
(ii)	Sign test. Not normal might well mean differences are not symmetrically	B1		Sign test
	distributed so sign test safer as <u>needs no</u> <u>assumption regarding distribution</u> of sample data.	E1		or 'diffs/data do not need to be normally distributed'
	OR	OR		
	Wilcoxon Signed-Rank test No clear evidence differences are not symmetrically distributed so can	(B1)		Wilcoxon Signed-Rank
	assume symmetry and W S-R preferred to sign test as rank orders of differences taken into account.	(E1)	2	Allow' W S-R does not require normally distributed data'
				Disallow W S-R more powerful unless being compared to sign test
	Total		12	

Q	Solution	Marks	Total	Comments
3(a)	$T_{A} = 2857 T_{B} = 2490 T_{C} = 3190$ $n_{A} = 6 \qquad n_{B} = 5 \qquad n_{C} = 7$ $T = 8537$ $\sum \sum x_{ij}^{2} = 4\ 067\ 243 \qquad N = 18$ $-\frac{T_{i}^{2}}{2} = 2857^{2} = 2400^{2} = 2100^{2}$			
	$\sum \frac{{T_i}^2}{n_i} = \frac{2857^2}{6} + \frac{2490^2}{5} + \frac{3190^2}{7}$ $= \frac{4054156.7}{85}$ SS Methods = 4054156.7 - $\frac{8537^2}{18}$			SS for methods
	$= \frac{5247.3}{18}$ SS _{Total} = 4 067 243 - $\frac{8537^2}{18}$ $= \frac{18333.6}{18}$	M1		SS for total
	SS df ms Methods 5247.3 2 2623.6 Error 13086.3 15 872.4	m1 m1		Error SS ft (not –ve) Method for MS – both correct
	Total 18333.6 17 $F = 2623.6 = 2.01$	m1		ft incorrect df Method for F ft
	$F = \frac{2623.6}{872.4} = 3.01$	A1		$\frac{2.8 - 3.2 \ 3.01/\text{in range with } \underline{\text{no}}}{\underline{\text{method}} \text{ seen allow 6 marks}}$ (or p = 0.080)
	H _o $\mu_A = \mu_B = \mu_C$ H ₁ at least 2 of the means differ			
	$F_{15}^{2} = 3.682 > 3.01$	B1 B1		df correct cv correct
	<u>Accept</u> H_0 . There <u>is no significant</u> <u>evidence of a difference in(mean)</u> <u>reading achievement scores</u> for the 3 methods. Allow no difference in teaching methods.	A1	9	correct ts/cv and conclusion <u>in</u> <u>context</u>
(b)	Assumptions: Reading scores are <u>normally distributed</u> for each method	E1		Normal mentioned
	The normal populations of reading scores have a <u>common variance</u>	E1	2	Explanations <u>in some sort of</u> <u>context (scores appears) in one</u> of the comments here
			11	Disallow 'random', 'no interaction'
	Total		11	

Q	Solution	Marks	Total	Comments
4(a)	Total with misregistration = $9 + 12 + \dots$ = <u>81</u>	M1		Total misregistered attempt
	Total wafers inspected = 480 Estimate for $p = \frac{81}{480}$ (0.16875)	m1 A1		<u>ft total</u> misregistered ÷ 480 0.168/0.169 awrt
sc2 n=8	Warning 95% control limits $\frac{81}{480} \pm 1.96 \times \sqrt{\frac{\frac{81}{480} \times \frac{399}{480}}{60}}$	B1 M1		Mark if seen in either limits Use of <u>1.96 and 3.09</u> Use of $\frac{p(1-p)}{n}$ for
n=480 B1M1		m1		n = 60 or 8 or 480 Correct expression
	= (0.074 , 0.264)	A1		0.073/0.075 0.263/0.265 awrt to 2 sf
	Action 99.8% control limits $\frac{81}{480} \pm 3.09 \times \sqrt{\frac{\frac{81}{480} \times \frac{399}{480}}{60}}$			
	= (0.019, 0.318)	A1	8	0.018/0.020 0.317/0.319 awrt to 2 sf
(b)				
sc1	(i) $p = \frac{20}{60} (= 0.333)$	M1		finding p correctly in any part
n=8 n=480 M1	Stop process immediately as p above upper action limit	E1		<u>E1 no ft</u> unless small arithmetic slip and all methods OK
	(ii) $p = \frac{16}{60} (= 0.267)$			
	Take another sample immediately as p beween upper warning and action limits	E1		
	(iii) $p = \frac{3}{60} (= 0.05)$			
	Below lower warning limit. <u>Investigate</u> to find out why misregistration	E1		For 'below warning' or 'take another sample'
	proportions have improved so much	E1	5	For investigation of improvement
			13	

Q		Solut	tion		Marks	Total	Comments
5(a)	р	0.01	0.05	0.10			
	P(acc) R	0.7397	0.2146	0.0424			
	$\frac{P(acc) S}{P(acc) T}$	0.9639 0.9691	0.5535 0.5119	0.1837 0.1259			
	P(acc) T	0.9691	0.5119	0.1259			
	$\begin{array}{l} \mathbf{Plan } \mathbf{R} \\ \mathbf{P}(0) n = 3 \end{array}$	0			M1		method seen/any one prob
	Plan S						correct
	$P(\leq 1)$ $n =$	= 30					
	- ()	00			M1		1 correct
					A1		2 correct M1 can be gained in Plan R or
							Plan S solutions
	Plan T						
	p = 0.05 = 0.2	774 + 0.3	650×0.6	5424	B1		correct prob seen (.6424 or .2774)
					M1		double sample attempt
					m1		n = 25 throughout
	= 0.5	12 (0.50	- 0.52)		A1	7	
(b)	Plot:	to p lot					
	any attempt one correct				M1		Any one thro (0,1) One
	all correct				A1 A1	3	All correct by eye
						C	T 'in middle'
(c)							
(t)	(i) 0.30				B1	1	(0.28 - 0.32)
	(ii) 0.77				B1	1	(0.74 - 0.79)
(d)		Plan S	1 0.0720) = 0.0261	M1		Prob rejection
				<u>9</u> = <u>0.0361</u>			
	P((),1) for <i>i</i>	n = 7 and p	p = 0.0361	m1		Binomial used correctly $n = 7$
	Pro	ob(more		1 - P(0,1)	m1		
				– 0.9758 0.0242	A1		(0.0240 - 0.0245)
						4	
			To	otal		16	

Q	Solution	Marks	Total	Comments
6 (a)(i)	$T_{Tv} = 2322.1 T_{News} = 2461.2 T_{Rad} = 2338.5$			
	$n_{Tv} = 4 \qquad n_{News} = 4 \qquad n_{Rad} = 4$			
	$\begin{array}{cccc} T_{Con} = 1692.6 & T_{Qual} = 1970.4 & T_{Cost} = 1829.6 \\ n_{Conv} = 3 & n_{Qual} = 3 & n_{Cost} = 3 \end{array}$			
	$T_{Health} = 1629.2$ $n_{Health} = 3$			
	T= 7121.8 $\sum \sum x_{ij}^2 = 4253083.0 \text{ N}=12$ Total SS			
	$4253083.0 - \frac{7121.8^2}{12} = \underline{26413.4}$	M1		Total SS method – must have correct given values
	Advertising approach SS C			
	$\frac{1692.6^2}{3} + \frac{1970.4^2}{3} + \frac{1829.6^2}{3} + \frac{1629.2^2}{3}$			
	$3 \qquad 3 \qquad 3 \qquad 3 \qquad 3 \qquad 3 \\ - \frac{7121.8^2}{12} = \underline{23030.3}$	M1		Adv approach SS method ft
	$\frac{12}{\mathbf{Media SS R}}$			
	$\frac{2322.1^2}{4} + \frac{2461.2^2}{4} + \frac{2338.5^2}{4} - \frac{7121.8^2}{12}$ $= \underline{2889.4}$	M1		Media SS method ft
	SS df ms			
	Advert 23030.3 3 7676.8 Appr 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 7 6 7 6 8 2 3 7 6 7 6 8 2 3 7 6 7 6 8 2 3 7 6 7 6 8 2 3 7 6 7 6 8 2 3 7 6 7 6 8 2 3 7 6 7 6 8 2 3 7 6 7 6 8 2 3 7 6 6 7 6 8 3 7 6 6 7 6 8 7 6 7 6 7 6 7 7 7 6 7			
	Media 2889.4 2 1444.7	M1		Error SS ft (not –ve)
	Error 493.7 6 82.3	B1		Error df= 6 correct
	Total 26413.4 11	M1		Method for Ad/Med MS ft
	H ₀ $\mu_{con} = \mu_{qual} = \mu_{cos t} = \mu_{health}$ H ₁ at least 2 of the means differ	m1		Method (dep prev M's) for F (either)
	$F = \frac{7676.8}{82.3} = \underline{93.3(9195)}$	A1		Adv approach F correct
	0210			
	$F_{6}^{3} = 9.78$ 93.3 > 9.78 Reject H _o	B1		cv = 9.78
	$H_0 \mu_{Tv} = \mu_{Newspaper} = \mu_{Radio}$			sc df muddled Allow B1, B1 for 9.78, 10.925 in any part
	H_1 at least 2 of the means differ			>
	$F = \frac{1444.7}{82.3} = \underline{17.6(16.5 - 18.5)}$	A1		Media F correct
	$F_{6}^{2} = \underline{10.925}$	B1		cv = 10.925
	17.6 > 10.925 Reject H _o			Correct conclusions (hath
	There is significant evidence of a difference in(mean) sales for the 4 adv	A1		Correct conclusions (both reject) ts/cv correct
	approaches and also for the 3 media types used.	E1		In <u>context ref to sales</u> and advert & media
			13	

6(a) cont.				
(ii)	part (i) indicates a significant difference between at least two advertising approaches. <u>Means</u> are $\overline{X}_{Con}=564.2 \ \overline{X}_{Qual}=656.8 \ \overline{X}_{Cost}=609.9$ and $\overline{X}_{Health}=543.1$ <u>Quality clearly has the highest</u> mean sales. Chose Quality approach	M1 A1	2	Use of means or totals for comparisons Quality chosen
(b)(i)	There is <u>no interaction</u> between the two factors.	E 1	1	For no interaction
(ii)	There is no particular reason why one advertising approach should <u>be more</u> or less suited to one media type rather than any other.	E1		General idea of assumption that each advertising approach has the same effect no matter whast media type is used
		E1	2	Explained precisely
	Total		18	
	TOTAL		75	