General Certificate of Education (A-level) June 2012

Statistics

SS05

(Specification 6380)

Statistics 5

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^0]Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\mathrm{s}^{2}=860.4$	B1	1	B1 860.4 (860~861)
(b)	90% confidence interval of s.d. given by			
	$3.325<9 \times 860.4 / \sigma^{2}<16.919$	m1		generous, allow slip $\left(10 \times \mathrm{s}^{2} \quad 9 \times \mathrm{s}\right)$ m 1 completely correct expression - allow incorrect χ^{2} values
	7743.6/16.919 < $\sigma^{2}<7743.6 / 3.325$	B1		B19df
		B1		B1 3.325 and 16.919
	$457.687<\sigma^{2}<2328.902$	M1		M1 correct method for interval for σ (or σ^{2} provided it is clearly called σ^{2} or variance)
	$21.4<\sigma<48.3$	A1	6	$\begin{aligned} & \text { A1 } 21.4 \text { (21.35~21.45) and } \\ & \quad 48.3 \text { (48.2~48.3) } \end{aligned}$
(c)	60 mm is above the upper limit of	E1		E1 above confidence interval
	be necessary to allow for such a large standard deviation.	E1」	2	E1 \checkmark unnecessary
	Total		9	

Q	Solution	Marks	Total	Comments
2(a)(i)	mean 15	B1		B1 15 cao
	s.d. $30 / \sqrt{ } 12=8.66$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	M1 method for s.d. or variance A1 8.66 (8.65~8.7)
(ii)	$18 / 30=0.6$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	M1 method - allow wrong tail A1 0.6 acf
(b)(i)	$\mathrm{z}=(12-10) / 3.1=0.645$	M1		M1 method - allow wrong tail
	$\mathrm{P}(>12)=1-0.741=0.259$	A1	2	A1 0.259 (0.257~0.262)
(ii)	Alan's waiting time is shorter on average and also less variable. His probability of having to wait more than 12 minutes is much less than Megara's	E1 E1	2	E1 average wait shorter E1 less variable E1 prob >12 much less maximum 2
(c)	Megara's waiting time is now rectangular on $[0,20]$ mean 10 s.d. $20 / \sqrt{ } 12=5.77$	M1 A1	2	M1 rectangular [0,20] may be implied A1 10 and 5.77 (5.75~5.8)
	Total		11	
3(a)(i)	$\begin{aligned} \text { mean } & =1 / 0.0045 \\ & =222.2 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	$\begin{aligned} & \hline \text { M1 method } \\ & \text { A1 } 222(222 \sim 222.4) \end{aligned}$
(ii)	probability will wear the suit in next 100 days $\begin{aligned} & =1-\mathrm{e}^{-0.45} \\ & =1-0.638=0.362 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	M1 100×0.0045 m 1 method - allow wrong tail A1 0.362 ($0.362 \sim 0.363$)
(iii)	probability will not wear suit for a $\begin{aligned} \text { year } & =\mathrm{e}^{-365 \times 0.0045} \\ & =\mathrm{e}^{-1.6425} \\ & =0.193 \end{aligned}$	M1 A1	2	M1 method - allow wrong tail A1 0.193 (0.193~0.194)
(b)	$\begin{aligned} \text { mean } & =365 \times 0.0045 \\ & =1.64 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	$\begin{aligned} & \text { M1 method } \\ & \text { A1 } 1.64(1.64 \sim 1.65) \end{aligned}$
(c)	number of times per year which Imran wears a suit is Poisson mean $1.64+1.72=3.36$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & \text { B1 Poisson, mean } 1.72+\text { their (b) } \\ & \text { B1 } 3.36(3.36 \sim 3.37) \end{aligned}$
	Total		11	

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{aligned} & \mathrm{s}_{1}{ }^{2}=3742.49\left(\mathrm{~s}_{1}=61.18\right) \\ & \mathrm{s}_{2}{ }^{2}=4716.14\left(\mathrm{~s}_{2}=68.67\right) \end{aligned}$	B1		B1 $3742.49(3740 \sim 3745)$ and $4716.14(4710 \sim 4720)$
	$\begin{aligned} & \mathrm{H}_{0}: \sigma_{1}=\sigma_{2} \\ & \mathrm{H}_{1}: \sigma_{1} \neq \sigma_{2} \end{aligned}$	B1		B1 hypotheses correct
	$\mathrm{F}=4716.14 / 3742.49=1.26$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		M1 method for F A1 1.26 ($1.255 \sim 1.265$) or 0.794 (0.793-0.794)
	c.v. $\mathrm{F}_{[6,9]}$ is 4.32	$\begin{gathered} \mathrm{B} 1 \\ \text { B1 } \downarrow \end{gathered}$		$\begin{aligned} & \text { B1 6,9 df } \\ & \text { B1 } \sqrt{ } 4.32 \text { - their df } \\ & \text { [Or 0.794 (0.793-0.794); 9,6df; } \\ & 0.231] \end{aligned}$
	Accept H_{0}, no significant evidence that standard deviation has changed after October 2011	A1	7	A1 accept H_{0} must be compared with F (or $\mathrm{p}=0.7245$ compared with 0.05)
(ii)	$\bar{X}_{1}=648.6 \quad \bar{X}_{2}=619.86$	B1		B1 $648.6(648 \sim 649)$ and 619.86 (619.5 ~ 620)
	Pooled variance estimate $\begin{aligned} & \mathrm{s}_{\mathrm{p}}^{2}=(3742.49 \mathrm{x} 9+4716.14 \mathrm{x} 6) / 15 \\ & =4131.95 \end{aligned}$	M1		M1 method for pooled variance
	$\mathrm{H}_{0}: \mu_{1}=\mu_{2}$	B1		B1 one hypothesis correct
	$\mathrm{H}_{1}: \mu_{1}>\mu_{2}$	B1		B1 both hypotheses correct - don't penalise the same error twice
	$t=\frac{(648.6-619.86)}{\sqrt{4131-95(1 / 10+1 / 7)}}$	M1 M1		M1 method for numerator M1 method for denominator -
	$=0.907$	A1		A1 0.907 ($0.9 \sim 0.91$) - ignore sign
	c.v. t_{15} is 1.753	B1		B1 15 df .
		B1		B1 1.753 - ignore sign
	Accept H_{0} i.e. no significant evidence of a reduction in Saturday takings after October 2011	$\begin{aligned} & \mathrm{A} 1 \checkmark \\ & \mathrm{~A} 1 \checkmark \end{aligned}$	11	A1 $\sqrt{\text { accept }} \mathrm{H}_{0}$ - must be compared with correct tail of t Al $\sqrt{ }$ conclusion in context 0 for contradiction
				(or $\mathrm{p}=0.189$ compared with 0.05)

Q	Solution	Marks	Total	Comments
4(b)(i)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{2}=\mu_{1}+50 \\ & \mathrm{H}_{1}: \mu_{2}>\mu_{1}+50 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	B1 1 correct hypothesis B1 both correct - only penalise the same mistake once
(ii)	801,887,1013,884,964,1014,1146	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	M1 method A1 accuracy - allow one slip
(b)(iii)	critical value of t_{15} is 2.602	B1		B1 2.602
	reject H_{0}, conclude total takings will be increased by more than $£ 50$.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	B1 conclusion (M implied) B1 in context must be compared with t - values $\text { (or } \mathrm{p}=0.0000936 \text {) }$
(c)	There is no significant evidence that Saturday takings have been reduced and there is significant evidence that	E1		E1 Saturday takings not reduced
	total weekend takings have increased by more than $£ 50$ per week. However the conclusions should be treated	E1		E1 no change in variability of Saturday takings
	with caution because the samples of weekends are not random and in particular the takings after Sunday	E1		E1 Total weekend takings increased more than $£ 50$ (maximum 2)
	approach of Christmas. Sunday takings are increasing steadily perhaps due to Christmas or customers getting used to Sunday opening.	E1	4	E1 samples not random E1 may be affected by Christmas/familiarity
	Total		29	

Q	Solution	Marks	Total	Comments
5(a)(i)	$\mathrm{z}_{1}=(236.5-244.43) / 4.09$	B1		B1 attempt to find tail probability <
	$=-1.939$	B1		B1 Use of 236.5 as upper bound of class or equivalent
	$\begin{aligned} \text { probability }<236.5 & =1-0.9737 \\ & =0.0263 \end{aligned}$	M1		M1 method for probability not dependent on B marks -
	expected number in first class $=$ $0.0263 \times 105=2.76$ expected number in last class	m1		m1 their prob $\times 105$
	$\begin{aligned} & 105-2.76-9.21-21.48-29.93- \\ & 24.89-12.36=4.37 \end{aligned}$	M1	5	M1 method for E last class
	$\begin{gathered} {[\text { or } \mathrm{z}=(251.5-244.43) / 4.09} \\ =1.729 \\ \text { probability }>251.5=1-0.9581 \\ =0.0419 \\ \text { expected number in last class }= \\ 0.0419 \times 105=4.40] \end{gathered}$			
(ii)	Combining classes where $\mathrm{E}<5$ O E			
	$\begin{array}{lll}<239 & 12 & 11.97\end{array}$	M1		M1 attempt to combine classes
	240-242 18 21.48	m1		m 1 correct method for combining
	243-245 37 29.93			classes + correct classes combined
	$\begin{array}{ccc} 246-248 & 21 & 24.89 \\ >248 & 17 & 16.73 \end{array}$			
	H_{0} : Normal distribution is adequate model H_{1} : Normal distribution is not adequate model			
	$\begin{aligned} & \Sigma(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}=0.03^{2} / 11.97+ \\ & 3.48^{2} / 21.48+7.07^{2} / 29.93+ \end{aligned}$	M1		M1 attempt at $\Sigma(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}-$ their Es
	$3.89^{2} / 24.89+0.27^{2} / 16.73=2.85$	A1		A1 2.85 (2.8~2.9) needs previous M1m1M1
	c.v. $\chi_{2}{ }^{2}$ is 4.605	B1ヶ		B1 $\checkmark 2 \mathrm{df}$
		B1		B1 4.605
	No significant evidence that the normal distribution is not an adequate model for the temperature at which the lubricant becomes ineffective.	$\mathrm{A} 1 \checkmark$ A1 \checkmark	8	A $1 \checkmark$ conclusion - needs all previous method marks; 5 marks for first (a)(i) and comparison with upper tail of χ^{2} A1 $\sqrt{ }$ in context
(b)	Kabeera's claim is correct as this is a large sample. Mean will be	E1		E1 claim correct
	approximately normally distributed whether the underlying distribution is normal or not. The sample will also give a good estimate of the standard deviation	E1	2	E1 large sample/ central limit theorem
	Total		15	
	TOTAL		75	

[^0]: Further copies of this Mark Scheme are available from: aqa.org.uk

