Version 1.0

General Certificate of Education (A-level) June 2012

Statistics

SS05

(Specification 6380)

Statistics 5

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1 (a)	$s^2 = 860.4$	B1	1	B1 860.4 (860~861)
(b)	90% confidence interval of s.d. given by $3.325 < 9 \times 860.4/\sigma^2 < 16.919$	M1 m1		M1 any correct expression – generous, allow slip $(10 \times s^2 9 \times s)$ m1 completely correct expression - allow incorrect χ^2 values
	$7743.6/16.919 < \sigma^2 < 7743.6/3.325$	B1 B1		B1 9df B1 3.325 and 16.919
	$457.687 < \sigma^2 < 2328.902$	M1		M1 correct method for interval for σ (or σ^2 provided it is clearly called σ^2 or variance)
	$21.4 < \sigma < 48.3$	A1	6	A1 21.4 (21.35~21.45) and 48.3 (48.2~48.3)
(c)	60mm is above the upper limit of the confidence interval. It will not be necessary to allow for such a large standard deviation.	E1 E1√	2	E1 <u>above</u> confidence interval E1√ unnecessary
	Total		9	

Q	Solution	Marks	Total	Comments
2(a)(i)	mean 15	B1		B1 15 cao
	s.d. $30/\sqrt{12} = 8.66$	M1 A1	3	M1 method for s.d. or variance A1 8.66 (8.65 ~ 8.7)
(ii)	18/30 = 0.6	M1 A1	2	M1 method - allow wrong tail A1 0.6 acf
(b)(i)	z = (12 - 10)/3.1 = 0.645	M1		M1 method - allow wrong tail
(ii)	P(>12) = 1 - 0.741 = 0.259	A1	2	A1 0.259 (0.257 ~ 0.262)
(11)	Alan's waiting time is shorter on average and also less variable. His	E1		E1 <u>average</u> wait shorter E1 less variable
	probability of having to wait more than 12 minutes is much less than Megara's	E1	2	E1 prob >12 much less maximum 2
(c)	Megara's waiting time is now	M1		M1 rectangular [0,20] may be
	rectangular on [0,20] mean 10 s.d.20/ $\sqrt{12} = 5.77$	A1	2	implied A1 10 and 5.77 (5.75~5.8)
	Total		11	
3(a)(i)	mean = 1/0.0045	M1	_	M1 method
	= 222.2	A1	2	A1 222 (222~222.4)
(ii)	probability will wear the suit in next 100 days = $1 - e^{-0.45}$ = $1 - 0.638 = 0.362$	M1 m1 A1	3	M1 100×0.0045 m1 method - allow wrong tail A1 0.362 (0.362~0.363)
(iii)	probability will not wear suit for a year = $e^{-365 \times 0.0045}$ = $e^{-1.6425}$	M1		M1 method - allow wrong tail
	= 0.193	A1	2	A1 0.193 (0.193~0.194)
(b)	$mean = 365 \times 0.0045$ = 1.64	M1 A1	2	M1 method A1 1.64 (1.64~1.65)
(c)	number of times per year which Imran wears a suit is Poisson mean $1.64 + 1.72 = 3.36$	B1 B1	2	B1 Poisson, mean 1.72 + their (b) B1 3.36 (3.36~3.37)
	Total		11	

SS05 – AQA GCE Mark Schen	ne 2012 June series
---------------------------	---------------------

Q	Solution	Marks	Total	Comments
4(a)(i)	$s_1^2 = 3742.49 (s_1 = 61.18)$ $s_2^2 = 4716.14 (s_2 = 68.67)$	B1		B1 3742.49 (3740 ~ 3745) and 4716.14 (4710 ~ 4720)
	$ H_0: \sigma_1 = \sigma_2 \\ H_1: \sigma_1 \neq \sigma_2 $	B1		B1 hypotheses correct
	F = 4716.14/3742.49 = 1.26	M1 A1		M1 method for F A1 1.26 (1.255 ~ 1.265) or 0.794 (0.793-0.794)
	c.v. F _[6,9] is 4.32	B1 B1√		B1 6,9 df B1 $\sqrt{4.32}$ - their df [Or 0.794 (0.793-0.794); 9,6df; 0.231]
	Accept H_0 , no significant evidence that standard deviation has changed after October 2011	A1	7	A1 accept H_0 must be compared with F
				(or $p = 0.7245$ compared with 0.05)
(ii)	$\overline{x}_1 = 648.6 \qquad \overline{x}_2 = 619.86$	B1		B1 648.6 (648 ~ 649) and 619.86 (619.5 ~ 620)
	Pooled variance estimate $s_p^2 = (3742.49x9 + 4716.14x6)/15$ = 4131.95	M1		M1 method for pooled variance
		B1 B1		B1 one hypothesis correct B1 both hypotheses correct - don't penalise the same error twice
	$t = \frac{(648.6 - 619.86)}{\sqrt{4131.95(1/10 + 1/7)}}$	M1 M1		M1 method for numerator M1 method for denominator -
	= 0.907	A1		A1 0.907 (0.9 ~ 0.91) - ignore sign
	c.v. t ₁₅ is 1.753	B1 B1		B1 15 df B1 1.753 - ignore sign
	Accept H_0 i.e. no significant evidence of a reduction in Saturday takings after October 2011	A1√ A1√	11	A1 \checkmark accept H ₀ - must be compared with correct tail of t A1 \checkmark conclusion in context 0 for contradiction
				(or p = 0.189 compared with 0.05)

SS05 – AQA GCE Mark Scheme 2012 June series

Q	Solution	Marks	Total	Comments
4(b)(i)	H ₀ : $\mu_2 = \mu_1 + 50$ H ₁ : $\mu_2 > \mu_1 + 50$	B1 B1	2	B1 1 correct hypothesis B1 both correct - only penalise the same mistake once
(ii)	801,887,1013,884,964,1014,1146	M1 A1	2	M1 method A1 accuracy - allow one slip
	critical value of t_{15} is 2.602	B1		B1 2.602
(b)(iii)	reject H_0 , conclude total takings will be increased by more than £50.	B1 B1	3	B1 conclusion (M implied) B1 in context must be compared with t- values
				(or p=0.0000936)
(c)	There is no significant evidence that Saturday takings have been reduced	E1		E1 Saturday takings not reduced
	and there is significant evidence that total weekend takings have increased by more than £50 per week. However the conclusions should be treated	E1		E1 no change in variability of Saturday takings
	with caution because the samples of weekends are not random and in particular the takings after Sunday opening may be affected by the	E1		E1 Total weekend takings increased more than £50 (maximum 2)
	approach of Christmas. Sunday takings are increasing steadily - perhaps due to Christmas or	E1	4	E1 samples not random
	customers getting used to Sunday opening.			E1 may be affected by Christmas/familiarity
	Total		29	

SS05 –	AQA GO	E Mark	Scheme	2012 June	series
--------	--------	--------	--------	-----------	--------

Q	Solution	Marks	Total	Comments
5 (a)(i)	$z_1 = (236.5 - 244.43)/4.09$	B1		B1 attempt to find tail probability <
	=-1.939	B1		B1 Use of 236.5 as upper bound of
		2.61		class or equivalent
	probability $< 236.5 = 1 - 0.9737$	M1		M1 method for probability
	= 0.0263 expected number in first class =			not dependent on B marks -
	$0.0263 \times 105 = 2.76$	m1		m1 their prob×105
	expected number in last class			r r
	105 - 2.76 - 9.21 - 21.48 - 29.93 -	M1	5	M1 method for E last class
	24.89 - 12.36 = 4.37			
	[or $z = (251.5 - 244.43)/4.09$ = 1.729			
	probability $> 251.5 = 1 - 0.9581$			
	= 0.0419			
	expected number in last class =			
	$0.0419 \times 105 = 4.40$]			
(ii)	Combining classes where $E < 5$			
(11)	O E			
	< 239 12 11.97	M1		M1 attempt to combine classes
	240 - 242 18 21.48	m1		m1 correct method for combining
	243 - 245 37 29.93			classes + correct classes combined
	246 - 248 21 24.89 >248 17 16.73			
	~248 17 10.73			
	H ₀ : Normal distribution is			
	adequate model			
	H ₁ : Normal distribution is not			
	adequate model Σ (O - E) ² /E = 0.03 ² /11.97 +	M1		M1 attempt at $\Sigma(O = E)^2/E$ their Eq.
	2(0 - E)/E = 0.03/11.9/ + $3.48^2/21.48 + 7.07^2/29.93 +$	1111		M1 attempt at Σ (O - E) ² /E - their Es
	$3.89^2/24.89 + 0.27^2/16.73 = 2.85$	A1		A1 2.85 (2.8~2.9)
				needs previous M1m1M1
	c.v. χ_2^2 is 4.605	B1√		B1√ 2df
		B1		B1 4.605
	No significant evidence that the	A1√		A1 \checkmark conclusion - needs all previous
	normal distribution is not an			method marks; 5 marks for first (a)(i)
	adequate model for the temperature	A1√	8	and comparison with upper tail of χ^2
	at which the lubricant becomes			A1 \checkmark in context
	ineffective.			
(b)	Kabeera's claim is correct as this is a			
(~)	large sample. Mean will be	E1		E1 claim correct
	approximately normally distributed			
	whether the underlying distribution is	F 1	_	
	normal or not. The sample will also give a good estimate of the standard	E1	2	E1 large sample/ central limit theorem
	deviation			licorem
	Total		15	
	TOTAL		75	
	IUIAL		15	