

General Certificate of Education

Statistics 6380

SS05 Statistics 5

Mark Scheme

2008 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS05				
Q	Solution	Marks	Total	Comments
1(a)	$(8-4) \times 0.1 = 0.4$	M1 A1	2	method 0.4 CAO
(b)	0.2 + 0.4 = 0.6	M1 A1	2	method 0.6 CAO
(c)	Mean 3 standard deviation	B1 M1		3 CAO - ignore units method for sd - allow variance if called variance
	$\sqrt{\frac{(8 - (-2))^2}{12}} = 2.89$	A1	3	2.89 (2.88 ~ 2.9)
	Total		7	
2(a)(i)	$\overline{x} = 84741.143$ $s = 34.677$	B1		34.677 (34.65 ~ 34.7) may be implied in (i) or (ii)
	95% confidence interval for σ			
	34.677 ²	M1		method for inequality - allow incorrect
	$1.237 < 6 \times \frac{34.677^2}{\sigma^2} < 14.449$			χ^2 incorrect $\frac{n}{n-1}$.
	$1.237 < \frac{7214.9}{\sigma^2} < 14.449$	B1 B1√		6df may be earned in (ii) 1.237 or 1.24 and 14.449 (14.4 ~ 14.5)
	$499.33 < \sigma^{2} < 5832.54 22.3 < \sigma < 76.4$	m1 m1 A1	7	method for interval for variance method for interval for sd $22.3 (22.3 \sim 22.4)$ and $76.4 (76.3 \sim 76.5)$ allow m1m0A1 correct interval for variance if called variance
(ii)	95% confidence interval for mean	B1		84741.143 (84700 ~ 84800)
	$84741.143 \pm 2.447 \times \frac{34.677}{\sqrt{7}}$	M1		use of their $\frac{sd}{\sqrt{7}}$
		m1		method for confidence interval - allow incorrect <i>t</i>
		B1√		2.447 (2.44 ~ 2.45)
	84741.143 ± 32.072 84709 ~ 84773	A1		84709 (84708 ~ 84710) and 84773 (84770 ~ 84774) - allow in ± form
		B1	6	final answer to 4 or 5 sf
(b)	Evidence that more expensive scales are less variable as 15 below 22.3. Less	E1√		more expensive scales less variable - their confidence interval for s.d.
	expensive scales seem sufficiently accurate for purpose of weighing yourself.	E1 E1	3	reason less expensive scales sufficiently accurate for purpose
(c)	No information can be deduced about possible bias as Akiva's actual weight is not known.	E1	1	none as Akiva's weight unknown allow comment on cost
	Total		17	

SS05 ((cont)
	concy

3(a) $s_n = 9.1354$ $s_n = 11.030$ BI $H_0: \sigma_n^2 = \sigma_n^2 = H_1: \sigma_n^2 \neq \sigma_n^2$ BI $H_0: \sigma_n^2 = \sigma_n^2 = H_1: \sigma_n^2 \neq \sigma_n^2$ BI $F = \frac{11.030^2}{9.1354^2} = 1.46$ MI $rescared rescared rescare$	SS05 (cont) O	Solution	Marks	Total	Comments
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				TUTAL	
$F = \frac{11.030^2}{9.1354^2} = 1.46$ $F = \frac{11.030^2}{9.1354^2} = 1.46$ $result of the invariances in the off the invariance in the off the invest in the off the invariance interval invector in the of$	3(a)		DI		$11.030 (11 \sim 11.1)$ - may be earned in
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			B1		population
c.v. $F_{[5,6]}$ is 5.988B1 B1/\$S5.6 df 5.988Accept H ₀ , no significant evidence of a difference in standard deviations of 		$F = \frac{11.030^2}{9.1354^2} = 1.46$	m1		method for F
Accept H_0, no significant evidence of a difference in standard deviations of speedsA1 \checkmark 8conclusion AG no context required(b) $\overline{x}_{\rm B} = 69.8429 \overline{x}_{\rm A} = 55.7333$ pooled variance estimate, s_p^2 $\frac{6 \times 9.1354^2 + 5 \times 11.030^2}{6 + 5} = 100.852$ $s_p = 10.043$ H_0: $\mu_{\rm B} = \mu_{\rm A}$ H_1: $\mu_{\rm B} > \mu_{\rm A}$ $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ M1method for pooled variance $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ B1 M1M1 $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ B1 M1 $t = \frac{2.53}{c.v. t_{11} is 1.796}$ A1 B1 B1 $^{\wedge}$ $t = 2.53$ c.v. t_{11} is 1.796A1 A1 $^{\vee}$ $t = 2.53$ c.v. t_{11} is 1.796A1 C $t = 2.54$ c.v. t_{11} is 1.796<		c.v. <i>F</i> _[5,6] is 5.988	B1		5,6 df
pooled variance estimate, s_p^2 $\frac{6 \times 9.1354^2 + 5 \times 11.030^2}{6 + 5} = 100.852$ $s_p = 10.043$ $H_0: \mu_B = \mu_A$ $H_1: \mu_B > \mu_A$ $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ M1method for pooled variance $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ M1M1 $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ M1 $t = \frac{2.53}{c.v. t_{11}}$ is 1.796M1 $reject H_0$, significant evidence that mean speed has been reduced after introduction of speed cameras.A1 $H_1 \checkmark$ B1 1 $A1 \checkmark$ 9(c) Purpose of speed cameras was to slow down cars which would otherwise have been speeding. This car had been slowed down by abnormal circumstances (sheep on road) so it was sensible to exclude it.E122sensible to exclude		difference in standard deviations of		8	
$6 \times 9.1354^2 + 5 \times 11.030^2$ $6 + 5$ $s_p = 10.043$ $H_0: \mu_B = \mu_A$ $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ M1method for pooled variance $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ B1M1 $t = \frac{2.53}{c.v. t_{11} is 1.796}$ M1 $reject H_0$, significant evidence that mean speed has been reduced after introduction of speed cameras.A1 $t = 0$ $1000000000000000000000000000000000000$	(b)	$\overline{x}_{\rm B} = 69.8429$ $\overline{x}_{\rm A} = 55.7333$			
$\dot{H}_0: \mu_B = \mu_A$ $H_1: \mu_B > \mu_A$ B1 $t = \frac{69.8429 - 55.7333}{10.043\sqrt{\frac{1}{7} + \frac{1}{6}}}$ B1M1M1 $= 2.53$ m1 $c.v. t_{11}$ is 1.796m1 $reject H_0$, significant evidence that mean speed has been reduced after introduction of speed cameras.A1 $H_1 \checkmark$ B1 $H_1 \checkmark$ B1 $H_1 \checkmark$ B1 $H_1 \land \mu_B > \mu_A$ B1 $H_2 \land \mu_B > \mu_A$ B1 $H_1 \land \mu_B > \mu_A$ B1 $H_2 \land \mu_B > \mu_A$ B1 $H_2 \land \mu_A > \mu_A > \mu_A$ B1 $H_2 \land \mu_A > \mu_A > \mu_A$ B1 $H_2 \land \mu_A > \mu_A > \mu_A > \mu_A$ B1 $H_2 \land \mu_A > \mu_A > \mu_A > \mu_A > \mu_A$ B1 $H_2 \land \mu_A > $		$\frac{6 \times 9.1354^2 + 5 \times 11.030^2}{6 + 5} = 100.852$	M1		method for pooled variance
$= 2.53$ c.v. t_{11} is 1.796A1 B1 B1/ A1/ $2.53 (2.52 \sim 2.53)$ - ignore sign 11df 1.796 - ignore sign, their df conclusion - needs one sided <i>t</i> -test plus +ve ts compared with +ve cv or -ve ts compared with -ve cv in context - allow arithmetic errors, incorrect <i>t</i> -value, 2-sided test.(c)Purpose of speed cameras was to slow down cars which would otherwise have been speeding. This car had been slowed down by abnormal circumstances (sheep on road) so it was sensible to exclude it.E1 E12		$\dot{H}_0: \mu_B = \mu_A H_1: \mu_B > \mu_A$			method for t - their pooled variance
c.v. t_{11} is 1.796B1 B1 B1 1 11dfreject H_0, significant evidence that mean speed has been reduced after introduction of speed cameras.B1 B1 1 1.796 - ignore sign, their df conclusion - needs one sided <i>t</i> -test plus +ve ts compared with +ve cv or -ve ts compared with -ve cv in context - allow arithmetic errors, incorrect <i>t</i> -value, 2-sided test.(c)Purpose of speed cameras was to slow down cars which would otherwise have been speeding. This car had been slowed down by abnormal circumstances (sheep on road) so it was sensible to exclude it.E12			m1		correct method for <i>t</i> - ignore sign
 (c) Purpose of speed cameras was to slow down cars which would otherwise have been speeding. This car had been slowed down by abnormal circumstances (sheep on road) so it was sensible to exclude it. E1 E1 E1 E1 E1 E1 		c.v. t_{11} is 1.796 reject H ₀ , significant evidence that mean speed has been reduced after introduction	B1 B1√ A1√		11df 1.796 - ignore sign, their df conclusion - needs one sided <i>t</i> -test plus +ve ts compared with +ve cv or -ve ts compared with -ve cv
down cars which would otherwise have been speeding. This car had been slowed down by abnormal circumstances (sheep on road) so it was sensible to exclude it.E1reason for abnormal speed unconnected with speed cameras sensible to exclude			Al√`	9	
down by abnormal circumstances (sheep on road) so it was sensible to exclude it.E12with speed cameras sensible to exclude	(c)	down cars which would otherwise have	171		reason for abnormal modern and the
sample no longer random		down by abnormal circumstances (sheep		2	with speed cameras sensible to exclude
Total 19		Tatal		10	sample no longer random

Q	Solution	Marks	Total	Comments
4(a)	mean $\frac{1}{1}$ = 50 hours	M1		method
	$\frac{1}{0.02} = 30$ hours	A1	2	50 CAO - ignore units
(b)	$1 - e^{-8 \times 0.02} = 1 - e^{-0.16}$	B1		attempt to use $e^{-8 \times 0.02}$
	= 1 - 0.8521437	M1		correct method
	= 0.148	A1	3	0.148 (0.1475 ~ 0.1485)
(c)	Probability not fail during 40 hours	M1		attempt to find probability not failing
	$1 - e^{-0.8} = 1 - 0.4493$			during 40 hours or (their prob not fail in 8
	= 0.551			hours) ⁵ . Allow fail/not fail errors
		m1		correct method
	Probability not failing $= 0.449$	A1	3	0.449 (0.449 ~ 0.45)
	(or $0.8521437^5 = 0.449$)			
(d)	Makes no difference - exponential	E1		no difference
	distribution has no memory.	E1	2	exponential distribution has no memory
(e)(i)	Mean time between failures is 50 hours.			
	Mean number of drill bits which fail in 40	M1		method
	have in $\frac{40}{-0.8}$	A1	2	0.8 CAO
	hours is $\frac{40}{50} = 0.8$	AI	Δ	0.0 CAO
(ii)	From tables (or otherwise) 0.449	B1	1	0.449 (0.449 ~ 0.45)
(11)	Total		13	

2	Solution	Marks	Total	Comments
5(a)	$p = \frac{1}{120 \times 8} (0 \times 5 + 1 \times 21 + 2 \times 56 + \dots \\ \dots 3 \times 10 + 4 \times 19 + 5 \times 5 + 6 \times 4)$	M1		method; disallow $\frac{36}{120}$
	$=\frac{288}{960}=0.3$	A1	2	0.3 AG
(b)	Binomial $n=8$ $p=0.3$ r P(r) E O	B1		attempt to use B(8, 0.3)
	0 0.0576 6.91 5 1 0.1977 23.72 21	M1		method for binomial probabilities
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		their probabilities × 120
	$ \begin{array}{cccc} 5 & 0.0467 & 5.60 \\ 6 & 0.0100 & 1.20 \\ \geq 7 & 0.0013 & 0.16 \end{array} 6.96 & 9 $	M1 m1		attempt at pooling correct method of pooling - requires previous M1M1M1
	H_0 : Binomial suitable model H_1 : Binomial not suitable model	B1		hypotheses - may be implied in conclusion
	$\sum \frac{(O-E)^2}{E} = 27.3$	M1		use of $\sum \frac{(O-E)^2}{E}$ their figures
	c.v. χ_4^2 is 13.277	A1 B1√		27.3 (27.2 ~ 27.5) 4df
	Reject H ₀ ; significant evidence that	B1√ A1√		13.277 (13.27 ~ 13.3) conclusion their figures AG must be compared with upper tail of χ^2
	binomial model does not provide suitable model for the number of tasks judged to have been carried out successfully.	A1√	12	in context - requires all method marks except pooling
(c)	Binomial \rightarrow probability of applicant failing test constant. Since binomial	E1		Binomial implies constant probability
	unsuitable the theory is not supported.	E1	2	theory not supported - needs a reason
(d)	More than expected are unsatisfactory on 2 tasks - less than expected unsatisfactory on 3 tasks. Other frequencies close to expected. It appears that Ebony may have	E1		large differences on 2 or 3 tasks identifie
	been generous in judging borderline applicants - allowing some applicants who would have failed 3 tasks and not been	E1		possibly related to candidates failing 3 tasks not being considered for
	considered for employment to only fail 2	E1	2	employment.
	tasks. Total	E1	3 19	adequate explanation.
	TOTAL		75	