

General Certificate of Education (A-level) January 2012

Statistics

SSO4
(Specification 6380)
Statistics 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: $\underline{\text { aqa.org.uk }}$
Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\begin{aligned} & \left.\begin{array}{l} \bar{x}=130.625 \quad s=51.994 \\ \mathrm{H}_{0}: \mu=115 \\ \\ \\ \\ t \end{array}\right)=(130.625-115) /(51.994 / \sqrt{ } 8) \\ & \\ & =0.850 \end{aligned}$ cv $t_{7} 1.895$ Accept H_{0} There is no significant evidence that the mean time from leak being reported to engineer arriving exceeds 115 minutes $p=0.212 \text { compare with } 0.05$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1m1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \checkmark \\ \text { A1 } \checkmark \\ \text { A1 } \checkmark \end{gathered}$	9	B1 130.625 (130 ~ 131) and 51.994 (51.9 ~ 52.1) B1 both hypotheses M1 use of their $\mathrm{sd} / \sqrt{ } 8$ m 1 method for t - ignore sign A1 0.850 ($0.849 \sim 0.851$) B1 7df B1 $\checkmark 1.895$ - their df A1 \checkmark conclusion must be compared with upper tail of t and not inconsistent with their H_{0}. Allow arithmetic errors and incorrect t-values only A1 \checkmark in context - needs previous A1 \checkmark mark. Final $\mathrm{A} 1 \checkmark \mathrm{~A} 1 \checkmark$ - allow for 2-sided test
	Total		9	
2(a)(i)	$\begin{aligned} & \text { Binomial } n=80 \quad p=0.0025 \\ & \rightarrow \text { Poisson, mean } 80 \times 0.0025=0.2 \\ & \mathrm{P}(\geq 2)=1-0.9825=0.0175 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	B1 B(80, 0.0025) B1 Poisson mean 80×0.0025 M1 method - allow wrong tail A1 0.0175 ($0.017 \sim 0.018$)
(ii)	Buy new tyres. There was a very low probability of this occurring if the tyres were in good condition.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2	E1 buy new tyres - must be consistent with their (a)(i) E1 low probability or other sensible comments
(b)(i)	$\begin{aligned} & \text { Binomial } n=60 \quad p=0.32 \\ & \rightarrow \text { Normal, mean } 19.2 \\ & \mathrm{sd}=\sqrt{60} \times 0.32 \times 0.68=3.61 \\ & z=(10.5-19.2) / 3.61=-2.41 \\ & \begin{aligned} \mathrm{P}(10 \text { or fewer }) & =1-0.9920 \\ & =0.0080 \end{aligned} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { m1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	6	B1 B($60,0.32$) B1 attempt at normal approximation M1 method for mean and sd m 1 method for z - ignore sign and cc m1 correct attempt at cc - ignore sign A1 0.0080 ($0.0079 \sim 0.0082$)
(ii)	Probability of chain coming off only 3 times if it needs replacing is very low. Don't replace.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2	E1 don't replace - must be consistent with their (b)(i) E1 low probability - clearly stated or other sensible comments
	Total		14	

Q	Solution	Marks	Total	Comments
3(a)	$p=48 / 98=0.48980$	B1		B1 48/98 ACF
	95% confidence interval for p			M1 method for sd
	$0.4898 \pm 1.96 \sqrt{ } 0.4898 \times 0.5102 / 98$	M1		B1 1.96
	0.4898 ± 0.0990	B1		m1 method - allow incorrect
	$0.391 \sim 0.589$	m1		z-value A1 0.391 ($0.39 \sim 0.392)$ and
		A1	5	$0.589(0.588 \sim 0.59)$ allow in \pm form
(b)	$\mathrm{H}_{0}: p=0.4 \quad \mathrm{H}_{1}: p>0.4$	B1		B1 hypotheses
	$\mathrm{B}(50,0.4)$	B1		B1 attempted use of $\mathrm{B}(50,0.4)$
	$\mathrm{P}(\geq 25)=1-0.9022=0.0978$	M1		M1 attempt to find $\mathrm{P}(\geq 25)$ using
	Accept H_{0} since $0.0978>0.05$	A1		$\mathrm{B}(50,0.4)$
	Conclude no significant evidence	A1 \checkmark		$\text { A1 } 0.0978(0.0975 \sim 0.098)$
	that more than 40% of those students who have attempted a			A1 \checkmark Conclusion - their figures by correct method
	DIY job have used cutlery instead of the proper tools	A1	6	A1 Conclusion in context probability must be compared with 0.05 for final mark and needs previous two A marks
(c)	Of students applying for accommodation, the proportion			E1 Only about half of students had attempted DIY
	who claimed to have attempted a DIY job was probably between 0.39 and 0.59 .	E1		E1 even for those who had evidence is not significant.
	Even if students who do not claim to have attempted a DIY job are excluded the evidence that more than 40% have used kitchen utensils is not significant.	E1		E1 companies claim refers vaguely to 'people'. The data is for a subset of students
	The company claimed that result referred to 'people' while sample is restricted to students applying for accommodation.	E1	3	E1 claim unconvincing E1 other sensible comment maximum 3 marks
	Total		14	

Q	Solution	Marks	Total	Comments
4(a)(i)	```Total time is normal mean \(74+28+126=228\) mins sd \(\sqrt{ }\left(4.6^{2}+5.3^{2}+7.2^{2}\right)=10.05 \mathrm{~m}\) (variance \(=101.09\))```	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		B1 normal - may be implied by later use B1 228 CAO M1 method for sd or variance A1 10.05 ($10 \sim 10.1$) or 101.09 (101~101.2)
(ii)	$\begin{aligned} z=(240-228) / 10.05 & =1.19 \\ \text { P(journey }>4 \text { hours }) & =1-0.884 \\ & =0.116 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	6	M1 method - their mean and sd allow wrong tail - needs consistent units A1 0.116 ($0.115 \sim 0.118$) lose 1 mark if cc used
(b)(i)	$z=(15-11) / 2.9=1.38$ Probability Bergitte arrives at harbour before $10 \mathrm{am}=0.916$	M1 A1	2	M1 method - allow wrong tail A1 0.916 (0.914 ~ 0.917) lose 1 mark if cc used
(ii)	Mean journey time for Bergitte $\begin{aligned} 0.916 \times 243+0.084 & \times 483 \\ & =263 \mathrm{mins} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	3	M1 method for mean journey time if boat missed - allow if time from 10 am used. m 1 method their probability A1 263 (262 ~ 264)
(iii)	Advise Bergitte to leave home a little earlier to avoid the small but non-trivial probability of a 4 hour delay in the journey.	E1	1	E1 leave home earlier
	Total		12	
5(a)	$\bar{x}=63.18 \quad s=8.097$ 95% confidence interval for mean $63.18 \pm 2.228 \times 8.097 / \sqrt{ } 11$ ie 63.18 ± 5.44 $57.74 \sim 68.62$	B1 M1 M1 B1 B1 A1 A1	6	```B1 63.18 (63.15 ~ 63.2) and 8.097 (8.09 ~ 8.1) M1 their sd \(/ \sqrt{ } 11\) m1 method for interval - allow incorrect \(t\)-value or arithmetic error only B1 10 df B1 \(\sqrt{2} .228\) their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in \(\pm\) form```
(b)	Statement 1: A.	B1		B1 A
	Statement 2: D. The confidence interval is certain to contain the mean time taken by members of the sample	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$		B1 D E1 explanation
	Statement 3: C. There is no reason why this should be true since confidence interval is for mean not individual values. It could conceivably be true by chance.	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	5	B1 C - allow D if accompanied by a reasonably good explanation E1 explanation
	Total		11	

Q	Solution	Marks	Total	Comments
6(a)	$\mathrm{H}_{0}: \mu=2 \quad \mathrm{H}_{1}: \mu<2$ (or 30)	B1		B1 hypotheses
	Poisson mean 30	B1		B1 Poisson mean 30
	\rightarrow Normal mean 30 sd $\sqrt{ } 30=5.477$	M1		M1 attempt at normal approx sd $\sqrt{ } 30$
	$\begin{aligned} z= & (24.5-30) / 5.477=-1.00 \\ & (\text { or }(24-30) / 5.477=-1.10) \end{aligned}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$		m1 method for z - ignore sign and incorrect cc
	cv -1.2816	B1		A1 -1.00 (-1.00 ~-1.01)
	Accept H_{0}	A1		or -1.10 ($-1.09 \sim-1.10)$
	Conclude there is no significant evidence that mean is less than 2	A1	8	B1 - 1.2816 - ignore sign A1 conclusion - must be
	viewers per week. $p=0.159 \text { or } 0.136 \text { compare } 0.1$			compared with lower tail of normal - consistent with their figures A1 in context - needs previous A
(b)	$\mathrm{H}_{0}: \mu=1.6 \quad \mathrm{H}_{1}: \mu>1.6$ (or 8)	B1		B1 hypotheses
	Poisson mean 8 $\mathrm{P}(10$ or more $)=1-0.7166$	M1		M1 attempt at P (10 or more)
	$\begin{array}{r} \mathrm{P}(10 \text { or more })=1-0.7166 \\ =0.283 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$		$\begin{gathered} \text { using Po(8) } \\ \text { B1 } 0.283(0.283 \sim 0.284) \end{gathered}$
	Since $0.283>0.05$, accept H_{0}			A1 accept H_{0}
	Conclude there is no significant evidence that mean is more than 1.6 viewers per week.	A1	5	A1 in context - needs completely correct method including comparison with 0.05
(c)	Some evidence but not significant that Lorraine's mean <2 and	E1		E1 no conclusive evidence either way
	Imran's mean > 1.6. Tests provide no conclusive evidence either way	E1	2	E1 some evidence Lorraine < 2 (or Imran >1.6) E1 evidence not significant E1 other sensible comment maximum 2 marks
	Total		15	
	TOTAL		75	

