Version 1.0

General Certificate of Education (A-level) January 2012

Statistics

SS04

(Specification 6380)

Statistics 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\overline{x} = 130.625$ $s = 51.994$	B1		B1 130.625 (130 ~ 131) and
	$H_0: \mu = 115$ $H_1: \mu > 115$	B1		51.994 (51.9 ~ 52.1)
	· · · · ·			B1 both hypotheses
	$t = (130.625 - 115)/(51.994/\sqrt{8})$	M1m1		M1 use of their $sd/\sqrt{8}$
	= 0.850	A1		m1 method for <i>t</i> - ignore sign
		B1		A1 0.850 (0.849 ~ 0.851)
	cv t ₇ 1.895	B1√		B1 7df
	Accept H_0 There is no significant	A1√		$B1\sqrt{1.895}$ - their df
	evidence that the mean time from			A1 \checkmark conclusion must be
	leak being reported to engineer	A1√	9	compared with upper tail of t
	arriving exceeds 115 minutes			and not inconsistent with
	-			their H ₀ . Allow arithmetic
	p = 0.212 compare with 0.05			errors and incorrect t-values
				only
				A1 \checkmark in context - needs previous
				A1 \checkmark mark.
				Final A1 $\sqrt{A1}$ - allow for
				2-sided test
	Total		9	
2(a)(i)	Binomial $n = 80 \ p = 0.0025$	B1		B1 B(80, 0.0025)
	\rightarrow Poisson, mean 80×0.0025 = 0.2	B1		B1 Poisson mean 80×0.0025
	$P(\geq 2) = 1 - 0.9825 = 0.0175$	M1		M1 method - allow wrong tail
		A1	4	A1 0.0175 (0.017 ~ 0.018)
(ii)	Dury now types. There was a year	E1		E1 buy new tyres - must be
(11)	Buy new tyres. There was a very low probability of this occurring if	E1	2	consistent with their (a)(i)
	the tyres were in good condition.	21	-	E1 low probability or other
	the types were in good condition.			sensible comments
(b)(i)	Binomial $n = 60$ $p = 0.32$	B1		B1 B(60,0.32)
	\rightarrow Normal, mean 19.2	B1		B1 attempt at normal
	$sd = \sqrt{60 \times 0.32 \times 0.68} = 3.61$	M1		approximation
	z = (10.5 - 19.2)/3.61 = -2.41	m1		M1 method for mean and sd
	P(10 or fewer) = 1 - 0.9920	m1		m1 method for z - ignore sign and
	= 0.0080	A1	6	сс
				m1 correct attempt at cc - ignore
				sign
				A1 0.0080 (0.0079 ~ 0.0082)
(ii)	Probability of chain coming off	E1		E1 don't replace - must be
(,	only 3 times if it needs replacing is	E1	2	consistent with their (b)(i)
	very low. Don't replace.		-	E1 low probability - clearly stated
	.e., iow. Don't replace.			or other sensible comments
	Total		14	

Q	Solution	Marks	Total	Comments
3 (a)	p = 48/98 = 0.48980	B1		B1 48/98 ACF
	95% confidence interval for p			M1 method for sd
	$0.4898 \pm 1.96 \sqrt{0.4898 imes 0.5102/98}$	M1		B1 1.96
	0.4898 ± 0.0990	B1		m1 method - allow incorrect
	0.391 ~ 0.589	m1		<i>z</i> -value
				A1 0.391 (0.39 ~ 0.392) and
		A1	5	0.589 (0.588 ~ 0.59)
				allow in ± form
(b)	H ₀ : $p = 0.4$ H ₁ : $p > 0.4$	B 1		B1 hypotheses
(0)	B(50, 0.4)	B1		B1 attempted use of B(50, 0.4)
	$P(\ge 25) = 1 - 0.9022 = 0.0978$	M1		M1 attempt to find $P(\ge 25)$ using
	Accept H_0 since 0.0978 > 0.05	A1		B(50, 0.4)
	Conclude no significant evidence	A1√		A1 0.0978 (0.0975 ~ 0.098)
	that more than 40% of those			A1 \checkmark Conclusion - their figures by
	students who have attempted a			correct method
	DIY job have used cutlery instead	A1	6	A1 Conclusion in context -
	of the proper tools			probability must be compared
				with 0.05 for final mark and
				needs previous two A marks
	Of students emplying for			E1 Only shout helf of students
(c)	Of students applying for			E1 Only about half of students
	accommodation, the proportion who claimed to have attempted a	E1		had attempted DIY
	DIY job was probably between	EI		E1 even for those who had
	0.39 and 0.59.			evidence is not significant.
	Even if students who do not claim			evidence is not significant.
	to have attempted a DIY job are	E1		E1 companies claim refers
	excluded the evidence that more	L 1		vaguely to 'people'. The data is
	than 40% have used kitchen			for a subset of students
	utensils is not significant.			
	The company claimed that result	E1	3	E1 claim unconvincing
	referred to 'people' while sample is			C
	restricted to students applying for			E1 other sensible comment
	accommodation.			
				maximum 3 marks
	Total		14	

	Solution	Marks	Total	Comments
4(a)(i)	Total time is normal	B1		B1 normal - may be implied by
	mean $74 + 28 + 126 = 228$ mins	B1		later use
	sd $\sqrt{(4.6^2 + 5.3^2 + 7.2^2)} = 10.05$ m	M1		B1 228 CAO
	(variance = 101.09)	A1		M1 method for sd or variance
				A1 10.05 (10 ~ 10.1) or
				101.09 (101 ~ 101.2)
(ii)	z = (240 - 228)/10.05 = 1.19	M1		M1 method - their mean and sd
	P(journey > 4 hours) = 1 - 0.884	A1	6	allow wrong tail - needs
	= 0.116			consistent units
				A1 0.116 (0.115 ~ 0.118)
				lose 1 mark if cc used
(b)(i)	z = (15 - 11)/2.9 = 1.38	M1		M1 method - allow wrong tail
	Probability Bergitte arrives at			
	harbour before $10 \text{ am} = 0.916$	A1	2	A1 0.916 (0.914 ~ 0.917)
				lose 1 mark if cc used
/•• \		141		
(ii)	Mean journey time for Bergitte $0.916 \times 243 + 0.084 \times 483$	M1		M1 method for mean journey time if boat missed - allow if time
		m1	2	
	= 263 mins	A1	3	from 10 am used.
				m1 method their probability
				A1 263 (262 ~ 264)
(iii)	Advise Bergitte to leave home a			
(111)	little earlier to avoid the small but			
	non-trivial probability of a 4 hour			
	delay in the journey.	E1	1	E1 leave home earlier
	Total	21	12	
5(a)	$\overline{x} = 63.18$ $s = 8.097$	B1		B1 63.18 (63.15 ~ 63.2) and
C (W)	95% confidence interval for mean	M1		8.097 (8.09 ~ 8.1)
	$63.18 \pm 2.228 \times 8.097/\sqrt{11}$	m1		
	$63.18 \pm 2.228 \times 8.097/\sqrt{11}$	m1 B1		M1 their $sd/\sqrt{11}$
	ie 63.18 ± 5.44	B1		M1 their sd/ $\sqrt{11}$ m1 method for interval - allow
		B1 B1√	6	M1 their sd/ $\sqrt{11}$ m1 method for interval - allow incorrect <i>t</i> -value or arithmetic
	ie 63.18 ± 5.44	B1	6	M1 their sd/ $\sqrt{11}$ m1 method for interval - allow incorrect <i>t</i> -value or arithmetic error only
	ie 63.18 ± 5.44	B1 B1√	6	M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i> -value or arithmetic error only B1 10 df
	ie 63.18 ± 5.44	B1 B1√	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df
	ie 63.18 ± 5.44	B1 B1√	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and
	ie 63.18 ± 5.44	B1 B1√	б	M1 their sd/ $\sqrt{11}$ m1 method for interval - allow incorrect <i>t</i> -value or arithmetic error only B1 10 df B1 $\sqrt{2.228}$ their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7)
	ie 63.18 ± 5.44	B1 B1√	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and
(b)	ie 63.18 ± 5.44	B1 B1√	6	M1 their sd/ $\sqrt{11}$ m1 method for interval - allow incorrect <i>t</i> -value or arithmetic error only B1 10 df B1 $\sqrt{2.228}$ their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7)
(b)	ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A.	B1 B1√ A1 B1	6	M1 their sd/ $\sqrt{11}$ m1 method for interval - allow incorrect <i>t</i> -value or arithmetic error only B1 10 df B1 $\sqrt{2.228}$ their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A
(b)	ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence	B1 B1√ A1 B1 B1	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D
(b)	ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the	B1 B1√ A1 B1	6	M1 their sd/ $\sqrt{11}$ m1 method for interval - allow incorrect <i>t</i> -value or arithmetic error only B1 10 df B1 $\sqrt{2.228}$ their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A
(b)	 ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the mean time taken by members of 	B1 B1√ A1 B1 B1	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D
(b)	ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the	B1 B1√ A1 B1 B1	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D
(b)	 ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the mean time taken by members of the sample 	B1 B1√ A1 B1 B1 E1	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D E1 explanation
(b)	 ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the mean time taken by members of the sample Statement 3: C. There is no reason 	B1 B1√ A1 B1 B1 E1 B1		 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D E1 explanation B1 C - allow D if accompanied
(b)	 ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the mean time taken by members of the sample Statement 3: C. There is no reason why this should be true since 	B1 B1√ A1 B1 B1 E1	6	 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D E1 explanation B1 C - allow D if accompanied by a reasonably good
(b)	 ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the mean time taken by members of the sample Statement 3: C. There is no reason why this should be true since confidence interval is for mean not 	B1 B1√ A1 B1 B1 E1 B1		 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D E1 explanation B1 C - allow D if accompanied by a reasonably good explanation
(b)	 ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the mean time taken by members of the sample Statement 3: C. There is no reason why this should be true since confidence interval is for mean not individual values. It could 	B1 B1√ A1 B1 B1 E1 B1		 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D E1 explanation B1 C - allow D if accompanied by a reasonably good
(b)	 ie 63.18 ± 5.44 57.74 ~ 68.62 Statement 1: A. Statement 2: D. The confidence interval is certain to contain the mean time taken by members of the sample Statement 3: C. There is no reason why this should be true since confidence interval is for mean not 	B1 B1√ A1 B1 B1 E1 B1		 M1 their sd/√11 m1 method for interval - allow incorrect <i>t</i>-value or arithmetic error only B1 10 df B1√ 2.228 their df A1 57.7 (57.7 ~ 57.8) and 68.6 (68.6 ~ 68.7) allow in ± form B1 A B1 D E1 explanation B1 C - allow D if accompanied by a reasonably good explanation

Q	Solution	Marks	Total	Comments
6(a)	H ₀ : $\mu = 2$ H ₁ : $\mu < 2$ (or 30) Poisson mean 30 → Normal mean 30 sd $\sqrt{30} = 5.477$	B1 B1 M1		B1 hypotheses B1 Poisson mean 30 M1 attempt at normal approx sd √30
	z = (24.5 - 30)/5.477 = -1.00 (or $(24 - 30)/5.477 = -1.10$) cv -1.2816 Accept H ₀ Conclude there is no significant evidence that mean is less than 2 viewers per week. p = 0.159 or 0.136 compare 0.1	m1 A1 B1 A1 A1	8	 m1 method for z - ignore sign and incorrect cc A1 -1.00 (-1.00 ~ -1.01) or -1.10 (-1.09 ~ -1.10) B1 -1.2816 - ignore sign A1 conclusion - must be compared with lower tail of normal - consistent with their figures A1 in context - needs previous A
(b)	H ₀ : $\mu = 1.6$ H ₁ : $\mu > 1.6$ (or 8) Poisson mean 8 P(10 or more) = 1 - 0.7166 = 0.283 Since 0.283 > 0.05, accept H ₀ Conclude there is no significant evidence that mean is more than 1.6 viewers per week.	B1 M1 B1 A1	5	 B1 hypotheses M1 attempt at P(10 or more) using Po(8) B1 0.283 (0.283 ~ 0.284) A1 accept H₀ A1 in context - needs completely correct method including comparison with 0.05
(c)	Some evidence but not significant that Lorraine's mean < 2 and Imran's mean > 1.6. Tests provide no conclusive evidence either way	E1 E1	2	 E1 no conclusive evidence either way E1 some evidence Lorraine < 2 (or Imran >1.6) E1 evidence not significant E1 other sensible comment maximum 2 marks
	Total		15	
	TOTAL		75	