

General Certificate of Education (A-level) January 2011

Statistics

SS04

(Specification 6380)

Statistics 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1(a) \& \begin{tabular}{l}
\[
p=114 / 250=0.456
\] \\
\(90 \%\) confidence interval for \(p\)
\[
\begin{aligned}
\& 0.456 \pm 1.6449 \sqrt{ } 0.456 \times 0.544 / 250 \\
\& 0.456 \pm 0.0518 \\
\& 0.404 \sim 0.508
\end{aligned}
\] \\
Values > 0.5 lie in the interval, as do values less than 0.5 . Claim may or may not be true.
\end{tabular} \& B1
M1B1
m1
A1

E1 \checkmark
E1 \& 5

2 \& | B1 114/250 acf |
| :--- |
| M1 method for s.d. |
| B1 1.6449 (1.64 ~ 1.65) |
| m1 method - allow incorrect |
| z-value |
| A1 0.404 ($0.4035 \sim 0.4045$) and |
| 0.508 ($0.507 \sim 0.508$) |
| allow in \pm form |
| E1 $\sqrt{ } 0.5(><)$ lies in interval |
| E1 claim unproven |

\hline \& Total \& \& 7 \&

\hline 2(a) \& | $\bar{x}=22.45 \quad \mathrm{~s}=2.034$ |
| :--- |
| 95\% confidence interval for mean $\begin{aligned} & 22.45 \pm 2.262 \times 2.034 / \sqrt{ } 10 \\ & 22.45 \pm 1.455 \quad(1.45 \text { to } 1.46) \\ & \quad 21.0 \sim 23.9 \end{aligned}$ | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { B1B1 } \\
\text { M1m1 } \\
\text { A1 }
\end{gathered}
$$
\] \& 6 \& ```

B1 22.45 (22.4 ~ 22.5) and
2.034 (2.03 ~ 2.04)
B1 9df
B1 2.262
M1 method for c.i - their s.d. and
t-value
m 1 correct method for c.i. their
t-value
A1 21.0 (20.95 ~ 21.05) and
23.9 (23.85~23.95)
allow in \pm form

``` \\
\hline (b) & 95\% confidence interval for mean
\[
\begin{aligned}
18.27 & \pm 1.96 \times 1.638 / \sqrt{ } 55 \\
18.27 & \pm 0.433 \\
17.9 & \sim 18.7
\end{aligned}
\] & \[
\begin{aligned}
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & 3 & \begin{tabular}{l}
B1 1.96 or 2.004 ~ 2.009 \\
M1 method for c.i \\
A1 17.9 ( \(17.8 \sim 17.9\) ) and 18.7 ( 18.65 ~ 18.75) allow in \(\pm\) form
\end{tabular} \\
\hline (c) & \begin{tabular}{l}
Evidence to support Olivia's claim for this rodent as lower limit of confidence interval for rodents on island is above upper limit of confidence interval on mainland. \\
Only one island examined and no evidence for other species
\end{tabular} & \begin{tabular}{l}
E1 \\
E1 \\
E1
\end{tabular} & 3 & \begin{tabular}{l}
E1 statement supported for this rodent \\
E1 relevant comparison of confidence intervals \\
E1 note of caution
\end{tabular} \\
\hline & Total & & 12 & \\
\hline 3(a) & \begin{tabular}{l}
\(\mathrm{H}_{0}: p=0.3 \mathrm{H}_{1}: p<0.3\) \\
\(\mathrm{B}(20,0.3)\)
\[
\mathrm{P}(\leq 4)=0.2375
\] \\
Accept \(\mathrm{H}_{0}\), since \(0.2375>0.1\) \\
No significant evidence to support newspapers articles claim. \\
\(p\) may not be constant - may depend on cyclist/speed/weather. Events may not be independent - 2 cyclists may arrive together
\end{tabular} & \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { M1m1 } \\
\text { A1 } \checkmark \\
\text { A1 } \checkmark \\
\\
\\
\text { E1 }
\end{gathered}
\] & 6 & \begin{tabular}{l}
B1 hypotheses \\
B1 attempted use of \(\mathrm{B}(20,0.3)\) \\
M1 attempt to find \(\mathrm{P}(\leq 4)\) m1 0.2375 ( \(0.237 \sim 0.238\) ) \\
A1 \(\checkmark\) Conclusion - their figures A1 \(\sqrt{ }\) Conclusion in context \\
E1 relevant suggestion
\end{tabular} \\
\hline & Total & & 7 & \\
\hline
\end{tabular}

\section*{SS04(cont)}


SS04(cont)
\begin{tabular}{|c|c|c|c|c|}
\hline Q & Solution & Marks & Total & Comments \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{r}
5(\mathbf{a}) \\
\text { (i) } \\
\text { (ii) }
\end{array}
\]} & B(85,0.62) & B1 & \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{```
B1 \(n=85 p=0.62\) - may be implied
    later
B1 52.7 cao
M1 method for s.d. or variance
```} \\
\hline & \(\mathrm{B}(85,0.62) \rightarrow\) Normal mean 52.7 & B1 & & \\
\hline & \[
\begin{aligned}
& \text { s.d. }=\sqrt{ } 85 \times 0.62 \times 0.28=4.475 \\
&(\text { variance }=20.026)
\end{aligned}
\] & M1 & & \\
\hline & \[
\begin{aligned}
& z=(50.5-52.7) / 4.475=-0.492 \\
& \mathrm{P}(>50)=0.689
\end{aligned}
\] & \[
\underset{\text { A1 }}{\text { m1 }}
\] & 5 & \begin{tabular}{l}
m1 method for \(z\) - ignore cc \\
m 1 attempt at cc \\
A1 0.689 (0.687 ~ 0.69)
\end{tabular} \\
\hline \multirow[t]{4}{*}{(b)(i)} & \(\mathrm{H}_{0}: \lambda=7 \mathrm{H}_{1}: \lambda<7\) & B1 & & B1 hypotheses \\
\hline & \(\mathrm{P}(X \leq 3)=0.0818\) & M1 & & M1 attempt to calculate \(\mathrm{P}(X \leq 3)\) using Poisson \\
\hline & \begin{tabular}{l}
\[
0.0818<0.1
\] \\
reject \(\mathrm{H}_{0}\) :
\end{tabular} & & & \begin{tabular}{l}
A1 0.0818 \\
A1 \(\sqrt{ }\) conclusion
\end{tabular} \\
\hline & significant evidence to support Mervin's belief that there has been a decrease in the number of volunteers. & A1 \(\checkmark\) & 4 & A1 \(\sqrt{ }\) conclusion \\
\hline \multirow[t]{6}{*}{(b)(ii)} & \(\mathrm{H}_{0}: \lambda=42 \mathrm{H}_{1}: \lambda<42\) & B1 & & B1 hypotheses - allow \(\lambda=7\) etc; do not penalise same mistake twice \\
\hline & \[
\begin{aligned}
& \mathrm{Po}(42) \rightarrow \text { Normal mean } 42 \\
& \text { s.d. }=\sqrt{42}=6.481 \text { (variance }=42) \\
& z=(33.5-42) / 6.481=-1.31
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{M} 1 \\
& \mathrm{~m} 1 \\
& \mathrm{~m} 1
\end{aligned}
\] & & M1 attempt at normal approximation to Poisson \\
\hline & \[
\begin{aligned}
& {[(33-42) / 6.481=-1.39]} \\
& \text { c.v. } z=-2.3263
\end{aligned}
\] & A1 & & m 1 method for \(z\) - ignore incorrect sign/cc \\
\hline & Accept \(\mathrm{H}_{0}\) : No significant evidence to & A1 \(\checkmark\) & \multirow[b]{2}{*}{8} & A1-1.31 (\(-1.3 \sim-1.4)\) \\
\hline & show mean less than 7 per week. & A1 \(\checkmark\) & & B1 use of sig level \(\leq 5 \%\) \\
\hline & \begin{tabular}{l}
Carmen should not authorise advert. \\
Exact Poisson P(\(\leq 33)=0.0912\) \\
allow B1 M0 m0 m0 A0 B1A1 \(\checkmark\) A1 \(\checkmark\)
\end{tabular} & & & \begin{tabular}{l}
A1 \(\checkmark\) conclusion, their sig level must be compared with lower tail of \(z\) \\
A1 \(\sqrt{ }\) in context
\end{tabular} \\
\hline \multirow[t]{2}{*}{(iii)} & Concluding there has been a decrease & B1 & \multirow[b]{2}{*}{2} & \multirow[t]{2}{*}{B1 idea of Type I error B1 in context} \\
\hline & in the number of applications when there has not & B1 & & \\
\hline \multirow[t]{2}{*}{(iv)} & Carmen wants very convincing & E1 & \multirow[b]{2}{*}{2} & \multirow[t]{2}{*}{\(\mathrm{E} 1 \leq 1 \%\) used E1 justification} \\
\hline & evidence, so low risk of Type I error required. & E1 & & \\
\hline & Total & & 22 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Q & Solution & Marks & Total & Comments \\
\hline \begin{tabular}{l}
\[
6(\mathrm{a})
\] \\
(i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
\(T_{2}\) : \\
mean \(=0.25+0.25=0.5\) \\
variance \(=0.02^{2}+0.02^{2}=0.0008\)
\end{tabular} & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
B1 0.5 cao \\
B1 method ag
\end{tabular} \\
\hline (iii) & \[
\begin{aligned}
& T_{5}: \text { normal } \\
& \quad \text { mean }=5 \times 0.25=1.25 \\
& \text { variance }=5 \times 0.02^{2}=0.002 \\
& \text { s.d. }=0.04472
\end{aligned}
\] & M1A1 & 2 & M1 method for variance or s.d. A1 1.25 and 0.002 cao (or 0.0447 (0.0447~0.045) \\
\hline (b)(i) & \[
z=(1.2-1.25) / 0.04472=-1.118
\] probability less than coffee used less than 1.2 litres \(1-0.868=0.132\) & \begin{tabular}{l}
M1 \\
A1
\end{tabular} & 2 & M1 method - allow wrong tail A1 0.132 (\(0.131 \sim 0.134)\) \\
\hline \multirow[t]{3}{*}{(ii)} & \[
\] & \[
\begin{gathered}
\mathrm{B} 1 \\
\mathrm{M} 1 \mathrm{~m} 1 \\
\mathrm{~m} 1
\end{gathered}
\]
\[
\mathrm{m} 1
\] & & \begin{tabular}{l}
B1 0.05 cao \\
M1 use of \(0.5^{2} \times 0.15^{2}\) \\
m 1 method for variance or s.d. - \\
their (a)(iii)
\end{tabular} \\
\hline & \begin{tabular}{l}
\[
z=(0-0.05) / \sqrt{ } 0.007625=-0.573
\] \\
probability Manesh uses less than half the coffee \(=1-0.717\)
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { m1 }
\end{aligned}
\] & & \begin{tabular}{l}
m 1 completely correct method for variance or s.d. \\
M1 attempting \(T_{5}-0.5 Y<0\), their
\end{tabular} \\
\hline & \(=0.283\) & A1 & 7 & m1 completely correct method disallow wrong tail A1 \(0.283(0.28 \sim 0.285)\) \\
\hline \multicolumn{2}{|r|}{Total} & & 13 & \\
\hline & TOTAL & & 75 & \\
\hline
\end{tabular}```

