Version1.1

General Certificate of Education (A-level) January 2011

Statistics

SS04

(Specification 6380)

Statistics 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
$\sqrt{10}$ or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS04				
Q	Solution	Marks	Total	Comments
1(a)	p = 114/250 = 0.456 90% confidence interval for p $0.456 \pm 1.6449\sqrt{0.456 \times 0.544/250}$ 0.456 ± 0.0518 $0.404 \sim 0.508$	B1 M1B1 m1 A1	5	B1 114/250 acf M1 method for s.d. B1 1.6449 (1.64 ~ 1.65) m1 method — allow incorrect z-value A1 0.404 (0.4035 ~ 0.4045) and 0.508 (0.507 ~0.508) allow in ± form
(b)	Values > 0.5 lie in the interval, as do values less than 0.5. Claim may or may not be true.	E1√ E1	2	$E1\sqrt{0.5}$ (><) lies in interval E1 claim unproven
	Total		7	
2(a)	$\overline{x} = 22.45$ $s = 2.034$ 95% confidence interval for mean $22.45 \pm 2.262 \times 2.034 / \sqrt{10}$ 22.45 ± 1.455 (1.45 to 1.46) $21.0 \sim 23.9$	B1 B1B1 M1m1 A1	6	B1 22.45 (22.4 ~ 22.5) and 2.034 (2.03 ~ 2.04) B1 9df B1 2.262 M1 method for c.i — their s.d. and <i>t</i> -value m1 correct method for c.i. their <i>t</i> -value A1 21.0 (20.95 ~ 21.05) and 23.9 (23.85~23.95) allow in ± form
(b)	95% confidence interval for mean 18.27 ± 1.96×1.638/√55 18.27 ± 0.433 17.9 ~ 18.7	B1 M1 A1	3	B1 1.96 or 2.004 ~ 2.009 M1 method for c.i A1 17.9 (17.8 ~ 17.9) and 18.7 (18.65 ~ 18.75) allow in ± form
(c)	Evidence to support Olivia's claim for this rodent as lower limit of confidence interval for rodents on island is above upper limit of confidence interval on mainland. Only one island examined and no evidence for other species	E1 E1 F1	3	E1 statement supported for this rodent E1 relevant comparison of confidence intervals
	Total		12	
3(a)	$\begin{array}{l} H_{0}: p = 0.3 \ H_{1}: p < 0.3 \\ B(20, \ 0.3) \\ P(\leq 4) = 0.2375 \\ Accept \ H_{0}, \ since \ 0.2375 > 0.1 \\ No \ significant \ evidence \ to \ support \\ newspapers \ articles \ claim. \end{array}$	B1 B1 M1m1 A1√ A1√	6	B1 hypotheses B1 attempted use of B(20,0.3) M1 attempt to find P(≤ 4) m1 0.2375 (0.237 ~ 0.238) A1 \checkmark Conclusion — their figures A1 \checkmark Conclusion in context
(b)	<i>p</i> may not be constant — may depend on cyclist/speed/weather. Events may not be independent — 2 cyclists may arrive together	E1	1	E1 relevant suggestion
	Total		/	

SS04(cont)				
Q	Solution	Marks	Total	Comments
4 (a)	$H_0: \mu_x = 1.85 H_1: \mu_x > 1.85$	B1		B1 both hypotheses M1 use of their sd./ $\sqrt{8}$
	$t = (1.915 - 1.85)/(0.182/\sqrt{8})$	M1m1		m1 method for t — ignore sign
	= 1.01	A1		A1 1.01 (1~1.02)
	c.v. t_7 1.415	B1		B1 1.415 — ignore sign
	Accept H_0 There is no significant evidence that the mean weight of fleece obtained with electric shears is greater than 1.85 kg.	A1√	6	A1 \checkmark conclusion, ts must be compared with upper tail of <i>t</i> and not inconsistent with their H ₀ .
(b)	H ₀ : $\mu_{\rm v} = 13.5$ H ₁ : $\mu_{\rm v} < 13.5$	B1		B1 both hypotheses — do not
	or pry the trippy the			penalise same mistake twice
	$t = (12.09 - 13.5)/(1.240/\sqrt{8})$	M1		M1 method for t — ignore sign
	= -3.22	A1		A1 – 3.22 (–3.21 ~ –3.22)
	c.v. $t_7 - 2.998$			A1 \checkmark Conclusion in context ts
	Reject H_0 . There is significant evidence that the mean shearing time with electric shears is less than 13.5 minutes	Alv	4	must be compared with lower tail of t and not inconsistent with their H ₀ . Interchange mark schemes for (a) and (b) if more favourable to candidate
(c)(i)	Davina's advice would save time but	E1√		E1 one point consistent with their
	may not increase the weight of fleece	E1	2	calculations
				E1 both correct points
(ii)	Cost of buying/running electric shearer;	E1		E1 a sensible factor
	need for power source; effect on			
	advertising; well being of sheep etc	E1	2	E1 another sensible factor
	Total		14	

Mark Scheme – General Certificate of Education	n (A-level) Statistics -	Statistics 4 – January 2011
--	--------------------------	-----------------------------

SS04(cont)				
Q	Solution	Marks	Total	Comments
5(a) (i) (ii)	B(85,0.62) B(85,0.62) → Normal mean 52.7 s.d. = $\sqrt{85 \times 0.62 \times 0.28} = 4.475$ (variance = 20.026) z = (50.5 - 52.7)/4.475 = -0.492	B1 B1 M1 m1m1	1	 B1 n=85 p=0.62 — may be implied later B1 52.7 cao M1 method for s.d. or variance m1 method for z — ignore cc
(b)(i)	$P(>50) = 0.689$ $H_0: \lambda = 7 H_1: \lambda < 7$ $P(X \le 3) = 0.0818$ $0.0818 < 0.1$ reject H ₀ : significant evidence to support Mervin's belief that there has been a decrease in the number of volunteers.	A1 B1 M1 A1 A1√	5	m1 attempt at cc A1 0.689 (0.687 ~ 0.69) B1 hypotheses M1 attempt to calculate $P(X \le 3)$ using Poisson A1 0.0818 A1 $$ conclusion
(b)(ii)	H ₀ : $\lambda = 42$ H ₁ : $\lambda < 42$ Po(42)→ Normal mean 42 s.d. = $\sqrt{42} = 6.481$ (variance = 42) z = (33.5 - 42)/6.481 = -1.31 [(33 - 42)/6.481 = -1.39] c.v. $z = -2.3263$ Accept H ₀ : No significant evidence to show mean less than 7 per week. Carmen should not authorise advert. <i>Exact Poisson P</i> (≤33) = 0.0912 allow B1 M0 m0 m0 A0 B1A1√A1√	B1 M1 m1 A1 B1 A1√ A1√	8	B1 hypotheses — allow $\lambda = 7$ etc; do not penalise same mistake twice M1 attempt at normal approximation to Poisson m1 s.d. = $\sqrt{42}$ m1 method for z — ignore incorrect sign/cc A1 -1.31 (-1.3 ~ -1.4) B1 use of sig level $\leq 5\%$ A1 \checkmark conclusion, their sig level — must be compared with lower tail of z A1 \checkmark in context
(iii)	Concluding there has been a decrease in the number of applications when there has not	B1 B1	2	B1 idea of Type I error B1 in context
(iv)	Carmen wants very convincing evidence, so low risk of Type I error required.	E1 E1	2	E1 ≤ 1% used E1 justification
	Total		22	

S04(cont)				
Q	Solution	Marks	Total	Comments
6 (a)				
	T_2 :			
(i)	mean = $0.25 + 0.25 = 0.5$	B1	1	B1 0.5 cao
(ii)	variance = $0.02^2 + 0.02^2 = 0.0008$	B1	1	B1 method ag
(iii)	T_5 : normal			
	mean = $5 \times 0.25 = 1.25$			M1 method for variance or s.d.
	variance = $5 \times 0.02^2 = 0.002$	M1A1	2	A1 1.25 and 0.002 cao (or
	s.d. = 0.04472			0.0447 (0.0447~0.045)
(b)(i)	z = (1, 2, -1, 25)/0.04472 = -1.118	M1		M1 method — allow wrong tail
(0)(1)	probability less than coffee used less	1011		$A10132(0131 \sim 0134)$
	than 1.2 litres $1 - 0.868 = 0.132$	A1	2	
			_	
(ii)	$T_5 - 0.5Y$ is normal			
. ,	mean $1.25 - 1.2 = 0.05$	B1		B1 0.05 cao
	variance $0.002 + 0.5^2 \times 0.15^2 =$	M1m1		M1 use of $0.5^2 \times 0.15^2$
	0.007625	m1		m1 method for variance or s.d. —
		N/1		their (a)(111)
	$z = (0 - 0.05)/\sqrt{0.00/625} = -0.5/3$	MII 1		mi completely correct method for
	probability Manesh uses less than half	mı		Variance of s.d. M_1 attempting $T = 0.5 V \neq 0$ their
	the coffee = $1 - 0.717$			M1 attempting $I_5 - 0.5Y < 0$, their
	- 0.282	Δ1	7	mean and s.d.
	- 0.285		/	m1 completely correct method —
				disallow wrong tail
				A1 0.283 (0.28 ~ 0.285)
	Total		13	
	TOTAL		75	