

General Certificate of Education June 2010

Statistics

SS03

Statistics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x \mathrm{EE}$	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS03

SS03 (cont)

Q	Solution	Marks	Total	Comments
1(b)(iii)	The correlation coefficient does not indicate a significant positive association. Journalist wrong. (B1 E1)	no ft		Mention journalist wrong with valid reason $\quad \mathrm{B} 1$ reason $\rightarrow \mathrm{SRCC} 0.5 / 0.6$ E1 journalist wrong
	There is evidence of a positive correlation but it was not found to be significant at 1%. Journalist could have a valid point. (B1 E1)	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	2	Mention possibility of positive correlation so journalist might have a valid point Comment + reason B1 reason \rightarrow test Acc H_{0} E1 Journalist correct
(iv)	Type II error is to accept H_{O} when actually H_{O} is not true. This would mean that the conclusion to the test in part (b)(ii) that there is no significant positive association between number of shots and number of goals is incorrect and there is actually a positive association between the two.	B1	2	Do not need 'positive'
	Total		21	

SS03 (cont)

SS03 (cont)

SS03 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & \operatorname{minimum~} \mathrm{T}=1+2+3+4+5+6+7+8=36 \\ & \operatorname{maximum~T}= \\ & 9+10+11+12+13+14+15+16=100 \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 A1 } \end{aligned}$	4	$\begin{array}{ll} \text { SC3 } & U=36-36=0 \\ & U=100-36=64 \end{array}$
(b)(i)	H_{0} Samples are from two populations with identical distributions H_{1} Samples are from two populations that do not have identical distributions $\begin{aligned} & \mathrm{U}=31-\frac{6 \times 7}{2}=10 \text { (lower tail) } \\ & \mathrm{U}=140-\frac{12 \times 13}{2}=62 \end{aligned}$	B1 M1 A1		Or ref to pop. averages
	$n=6, m=12 \quad$ lower tail $\mathrm{cv}=15$ test stat $\mathrm{U}=10$ $\mathrm{U}<15$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$		For consistent upper/lower cv cv $11,14,16,18,22,13$ for M1
	Reject H_{o} There is sufficient evidence to suggest a difference in heights between the two populations of children.	A1	6	
(ii)	There is a significant difference in the heights of children who are the youngest in their family and those who are either an only child or not the youngest. Those who are the youngest in their family appear to be shorter when compared to children of the same age who are either an only child or not the youngest in their family.	E1	1	No ft on incorrect conclusion
	Total		11	

SS03 (cont)

Q	Solution							Marks	Total	Com			
5(a)	H_{o} pop mean/median, $\mu / \eta=56$ H_{1} pop mean/median, $\mu / \eta<56$ 1 tail 1\%							$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$		Or words/pop aver Consistent sign witl			
	dif rank	-	0	-18 9	-13 6	-36 12	-16 7	M1		For differences (can +/-be reversed)			
	+1 1	-10 3.5	-24 10	-31 11	+10 3.5		-12	m1		For ranks \| smallest	= rank 1 (allow rank1 for 0)		
	$\begin{aligned} & \text { Test stat } \mathrm{T}=4.5 \quad n=12 \\ & \mathrm{cv}=10 \\ & \mathrm{~T}<10 \end{aligned}$							m1 A1 B1 M1		Either total correct For cv$7,10,13,14$			
	Significant evidence at 1% level to reject H_{0}. Conclude that new tablet is faster, on average, than existing tablet.							E1	9	Correct conclusion			
(b)(i)	Wilcoxon signed-test is preferred because the magnitudes of the differences are taken into account whereas, with the sign test, only the signs of the differences are used.							$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		Reduces expt. error		E1	
(ii)	Data not symmetrically distributed therefore Wilcoxon signed-rank cannot be carried out. or Data given only as signs/preferences so only sign test possible.							B1					
(iii)								B1	4	Or ts seen	OE		
	Total								13				
	TOTAL								75				

