General Certificate of Education (A-level) January 2011

Statistics

SS03

(Specification 6380)

Statistics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x \mathrm{EE}$	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS03(cont)

SS03(cont)

Q	Solution	Marks	Total	Comments
4	H_{0} samples from identical populations			
	H_{1} samples not from identical populations: taste better on average for pods produced using new method 1 tail 5%	B1		
	Current method ranks $\begin{array}{llllll}10 & 12 & 6 & 8 & 11 & 5\end{array}$	M1		Sorting into 2 groups
	New method ranks $\begin{array}{llllll} 3 & 2 & 7 & 1 & 4 & 9 \end{array}$			
	$T_{\text {current }}=52 \quad T_{\text {new }}=26$	M1		Totals
	$\begin{aligned} & U_{\text {current }}=52-\frac{(6 \times 7)}{2}=31 \\ & U_{\text {new }}=26-\frac{(6 \times 7)}{2}=5 \end{aligned}$	M1		Method for U
	test stat $=5$ (lower)	A1		Either U correct
	$n=6, m=6 \mathrm{cv}=\text { lower tail } 7$	B1		cv
	Since $5<7$, reject H_{0}	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Comparison correct cv and ts (can be upper tail)
	Significant evidence to suggest that populations are not identical and that the taste is better, on average, for pods produced using new method.	E1	9	
	Total		9	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \multirow[t]{6}{*}{5(a)} \& \(\mathrm{H}_{0}\) Samples are taken from identical populations \(\mathrm{H}_{1}\) Samples are not taken from identical populations \(1 \%\) sig level \& B1 \& \& \begin{tabular}{l}
or \\
\(\mathrm{H}_{0} \quad \eta_{A}=\eta_{B}=\eta_{C}=\eta_{D}=\eta_{E}\) \\
\(\mathrm{H}_{1}\) at least two of \(\eta_{A}, \eta_{B}, \eta_{C}, \eta_{D}, \eta_{E}\) do
\end{tabular} \\
\hline \& \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& \begin{tabular}{l}
totals \\
any one correct
\end{tabular} \\
\hline \& \[
\begin{aligned}
\sum_{i=1}^{m} \frac{T_{i}^{2}}{n_{i}} \& =\frac{75^{2}}{5}+\frac{99^{2}}{5}+\frac{26^{2}}{5}+\frac{31^{2}}{5}+\frac{94^{2}}{5} \\
\& =5179.8
\end{aligned}
\] \& m1 \& \& \[
\sum_{i=1}^{m} \frac{T_{i}^{2}}{n_{i}}
\] \\
\hline \& \[
H=\frac{12}{25 \times 26} \times 5179.8-(3 \times 26)=17.63
\] \& m1

A1 \& \& test stat:

$$
\begin{aligned}
& H=\frac{12}{N(N+1)} \sum_{i=1}^{m} \frac{T_{i}^{2}}{n_{i}}-3(N+1) \\
& 17.0 \sim 18.4
\end{aligned}
$$

\hline \& Critical value from $\chi_{4}^{2}=13.277$ $H>13.277$ \& $$
\begin{aligned}
& \text { B1 } \\
& \text { M1 }
\end{aligned}
$$ \& \& for cv for comparison

\hline \& Sig evidence to reject H_{0} and conclude that samples are not from identical populations. At least 2 average acidity levels are different. \& E1 \& 9 \&

\hline (b) \& Variety B has highest total of ranks so if a low acidity beer is desirable, this variety would be the best choice. \& $$
\begin{aligned}
& \text { B1 } \\
& \text { E1 }
\end{aligned}
$$ \& 2 \& Identification of B Explained

\hline (c) \& | Conclusion only shows that Variety B differs significantly from Variety C (highest and lowest). However, Variety B and Variety E have similar acidity level ranks. |
| :--- |
| Thus Variety E is a sensible choice if popular with customers. | \& E1

E1 \& 2 \&

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

SS03(cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	H_{0} Women like the taste of both recipes equally, on average H_{1} On average, women prefer the taste of the new recipe.	B1 B1	2	1 tail correct context/wording correct — mention women H_{0} no preference H_{1} preference B1 only
(ii)	1 tail test $\quad 5 \%$ level test stat $10+$ or $5-$ $B(15,0.5)$ model	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$		for test stat for model $\mathrm{B}(15,0.5)$ seen
	$P(\geq 10+)=P(\leq 5-)=0.151$ Since $0.151>0.05$ for 1 tail test Accept H_{0} No sig evidence to suggest adult females prefer new recipe	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	5	correct probability and comparison with 0.05 In context
(b)	B ($30,0.5$) model 1 tail 5% level	M1		Use of $\mathrm{B}(30.0 .5)$ method must be seen
	$\mathrm{P}(\geq n+)<0.05$ required from tables, $\begin{aligned} & \mathrm{P}(\leq 10-)=\mathrm{P}(\geq 20+)=0.0494 \\ & \mathrm{P}(\leq 11-)=\mathrm{P}(\geq 19+)=0.1002 \end{aligned}$	M1 M1		Comparison of $\mathrm{B}(30,0.5)$ probability with 0.05 Correct $\mathrm{B}(30,0.5)$ probability seen
	minimum number therefore 20 adult females out of the 30 to prefer the new recipe.	A1	4	Or equivalent
	Total		11	
	TOTAL		75	

