

General Certificate of Education

Statistics 6380

SS03 Statistics 3

Mark Scheme

2010 examination – January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Key to mark scheme and abbreviations used in marking

M	mark is for method							
m or dM	mark is dependent on one or more M marks and is for method							
A	mark is dependent on M or m marks and is for accuracy							
В	mark is independent of M or m marks and is for method and accuracy							
E	mark is for explanation							
√or ft or F	follow through from previous	MC						
GA O	incorrect result	MC	mis-copy					
CAO	correct answer only MR mis-read							
CSO	correct solution only RA required accuracy							
AWFW	anything which falls within FW further work							
AWRT	anything which rounds to	ignore subsequent work						
ACF	any correct form	from incorrect work						
AG	answer given	BOD	given benefit of doubt					
SC	special case	WR	work replaced by candidate					
OE	or equivalent	FB	formulae book					
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme					
–x EE	deduct x marks for each error	G	graph					
NMS	no method shown	c	candidate					
PI	possibly implied	sf	significant figure(s)					
SCA	substantially correct approach	dp	decimal place(s)					

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS03

Q Q	Solution	Marks	Total	Comments
1(a)	H_0 pop median/ $\eta = 11250$ H_1 pop median/ $\eta \neq 11250$	B1		Or words referring to average price
	2 tail 10%			
	signs -+ ++ ++ .+	M1		signs
	$n = 9$ test stat = $6^+/3^-$	A1		test stat correct
	Model B(9, 0.5)	M1		Bin model seen to be used Or cr $\{0,1\}\{8,9\}$ with probs
	$P(\le 3^-) = P(\ge 6^+) = 0.254 > 0.05$	M1		Comparison of correct B(9, 0.5) prob with 0.05 or use of identified cv with probability (or
	Accept H ₀			0.508/0.10)
	There is no significant evidence to doubt that the median asking price is £11250.	A1	6	
(b)	A Type II error occurs when an incorrect null hypothesis is accepted. In this case, it would mean that we concluded that the population median	B1		Type II correctly identified.
	asking price was £11250 but, in fact, the median asking price was not equal to £11250.	E1	2	Context
	Total		8	

Q Q	Solution	Marks	Total	Comments
2(a)(i)	From calculator $r = 0.891$			Alternative $n = 7$
	29495 2885×69			$\sum y = 69 \sum x = 2885$
	or $r = \frac{29495 - \frac{2885 \times 69}{7}}{\sqrt{14242.86} \times \sqrt{98.86}}$			$\sum y^2 = 779$
	1057.14			_
	$=\frac{1037.14}{119.34\times9.94}$			$\sum x^2 = 1203275$
	= 0.891			$\sum xy = 29495 M1$
		M1		
		m1 A1		m1 formula in (i) or (ii) 0.885 to 0.905 A1 (3sf)
		AI		0.865 to 0.905 AT (381)
(ii)	From calculator $r = 0.658$			Alternative $n = 7$
(11)	$34021 - \frac{2885 \times 81.8}{7}$			
	or $r = \frac{7}{\sqrt{14242.86} \times \sqrt{15.35}}$			$\sum z = 81.8 \qquad \sum z^2 = 971.24$
	$= \frac{307.71}{119.34 \times 3.92}$			$\sum xz = 34021 \text{ M1}$
	= 0.658	M1A1	5	0.650 to 0.665 A1
(b)				
	$r_{xy} = 0.891$ $r_{xz} = 0.658$			
	$H_0 \rho = 0$ $H_1 \rho > 0$ 1 tail 5 % sig level	B1		For hypotheses stated correctly once
	Need only be stated once	DI		For hypotheses stated correctly office
	-			
	test stat $r_{xy} = 0.891$			F 1 .
	cv = 0.6694 $n = 7since t > 0.6694$			For cv and comparison
	Reject H ₀	M1		For Reject H ₀ ; ft
	toot stat v = 0.459	A1√		
	test stat $r_{xz} = 0.658$ cv = 0.6694 n = 7	AI∨		
	since $t < 0.6694$ Accept H ₀	A1	4	For Accept H ₀
	Accept 110	711	7	Tot recept 11 ₀
(c)	There is significant evidence to suggest a			
	positive correlation between the calories and the fat content of milkshakes: the	E1		
	higher the fat content, the higher the calories.			
	There is no significant evidence to suggest			
	a positive correlation between the calories and the volume of the milkshakes.	E1	2	Need to refer to part (b)
	Total		11	

Select Reject Total N 24 126 150		Comments	Total	Marks		Q			
Select Reject Total N 24 126 150	ı				West				
N				M1		ected	= 395 reje	500 – 105	` ,
N									
N					Total	Daisat	Calcat	j	
E 12 88 100								N	
S 12 68 80 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1								l	
W 57 113 170 Total 105 395 500		For one unknown 'select' correct							
Total 105 395 500 (b) H ₀ Selection independent of home region H ₁ Selection not independent of Home region 1 tail 1% Expected frequencies Select Reject N 31.5 118.5 S 21 79		All correct	4	A 1				l 	
(b) H ₀ Selection independent of home region H ₁ Selection not independent of Home region 1 tail 1% Expected frequencies Select Reject N 31.5 118.5 S 21 79						1			
region H ₁ Selection not independent of Home region 1 tail 1% Expected frequencies Select Reject N 31.5 118.5 S 21 79					200	070	100	10001	
Select Reject N 31.5 118.5 S 21 79				B1	f	(b)			
N 31.5 118.5 MI E method for 3 correct; ft						s	requencies	Expected f	
		E method for 3 correct; ft		M1	118.5	1.5	31		
A L./ Leor all H correct		For all E correct		A1√	E 16.8 63.2				
W 35.7 134.3									
W 33.7 134.3					134.3	3.1	3.		
$\int_{-\infty}^{\infty} (O - E)^2$ m1 dep sensible effort for E		dep sensible effort for E		m1			$-E)^2$	· - \(\nabla(0)\)	
$ts = \sum_{E} \frac{t}{E}$ Correct denominator ft					$ts = \sum \frac{(O - E)^2}{E}$				
$= \frac{7.5^2}{31.5} + \frac{7.5^2}{118.5} + \dots + \frac{21.3^2}{134.3}$ m1 Correct effort at ts ft				m1					
= 24.97 A1				A1					
df = 3 1% $cv = 11.345$ B1 3 df		3 df		B1		11.345	cv = 1	df = 3 19	
ts > 11.345 B1 for cv and comparison		for cv and comparison		B1			;	ts > 11.345	
Reject H_0 A1 9			9	A1					
(c) There is significant evidence to suggest that selection is not independent of home region. E1 General conclusion in context (could be in part (b))				E1	that selection is not independent of home			(c)	
Artists from the south seem less likely to be selected (expected higher than observed) and those from the west seem much more likely to be selected (expected lower than observed). E1 2 More detailed identification		More detailed identification		E1	be selected (expected higher than observed) and those from the west seem much more likely to be selected				
Total 15									

O SSU3(cont)		Solution		Marks	Total	Comments
4(a)(i)	Ranks					
		Unleaded	Diesel	M1		attempt at ranks
	Cyprus	1	1			(can be reversed)
	Romania	2	2			
	Sweden	3	6.5	M1		for 12 correct
	Slovakia	4	6.5	A 1		all as must
	Austria	5	5	A1		all correct
	Malta	6	4			
	Finland	7	3			alternative
	France	8	8			d = 0,0, 3.5, 2.5, 0, 2, 4, 0,0,0
	Germany	9	9			$\sum d^2 = 38.5$ B1
	UK	10	10			
	r_s = 0.766(3 sf from calc)				6	$r_{\rm s} = 1 - \frac{6 \times 38.5}{10 \times 99} = 0.767$ M1, A1ft small slip
(ii)	H ₀ Rank orders of unleaded petrol excise duty and diesel excise duty are independent.			B1		or alternatives indicating H ₀ No association H ₁ Association
	H ₁ Rank order duty and diese independent –	are not				
	2 tail 5%					
	$cv = \pm 0.6485$	$n = 10 \ 2 \text{ tai}$	1 5%	В1		For cv
	test stat $r_s = 0.766$ $ r_s > 0.6485$					
				M1		For comparison ts/cv; ft
	Reject H ₀ Sigr level to sugges unleaded petro excise duty for	on between and diesel	E1	4	For correct conclusion in context [Allow 1 tail H ₁ and consistent cv]	

Q	Solution	Marks	Total	Comments
4(b)	H_0 pop median/mean diff $\eta_d = 0$	B1		
	H ₁ pop median/mean diff $\eta_d > 0$ 1 tail 1% (<i>d</i> is unleaded – diesel)	B1		Consistent with differences
	diff 4 5 - 1 8 12 22 14 15 0	M1		For differences UL – Diesel or Diesel – UL
	rank 3 4 2 1 5 6 9 7 8 exclude	M1		For ranks
	$T_{+}=3+\ldots+8=43$	m1		For total of ranks
	$T_{-}=2$	A1		For one correct total or $ts = 2$ if method
	Test stat $T = 2$			seen
	$n=9$ cr ≤ 3	B1		For cv
	T < 3	M1		Comparison correct cv/ts
	Significant evidence at 1% level to reject			
	H ₀ and conclude that average excise duty			
	for diesel is less than that for unleaded			
	petrol in European countries	E1	9	In context
	Total		19	

Q		Solution		Marks	Total	Comments
5(a)						
	С	D	E			
	14.4	14.1	13.9			
	14.5	14.3	14.2	M1		Effort to put into 3 categories
	14.7	14.4	14.6	IVI I		Effort to put into 3 categories
	15.2	14.8	14.9	A1		6 correctly placed
	15.4	15.0	15.1	711		(can be implied by totals later)
						(can be implied by totals later)
	7 . 1					
	Ranks					
	C	D	E			
	5½	2	1			
	7	4	3			
	9	5½	8			
	14	10	11	M1		Ranks as one group
	15	12	13	A1		At least 10 correct
	$T_{\rm C} = 50 \frac{1}{2}$	$T_{\rm p} = 33 \frac{1}{2}$	$T_{\rm p} = 36$	m1		
	$n_{\rm C} = 50^{-72}$	$n_{\rm D} = 55^{-72}$ $n_{\rm D} = 5$	$n_{\rm E} = 50$	B1		Totals of ranks
				D1		Totals of falls
	H _o Samples are	e taken from 16	dentical			
	populations			B1	or	
	II Commission	a mat taleam fua	اده نامسدنده ا		H_0 $\eta_{\rm C} = \eta_{\rm D} = \eta_{\rm E}$	
	H ₁ Samples are populations –					H_1 at least two of η_C, η_D, η_E do differ
	average fuel u					TO THE
	average ruer u	sages uniter 10	770 1 tan			
	$\sum_{i=1}^{m} T_i^2$ 50.5	$3^2 33.5^2 36$	2	1		$\int_{C} \int_{C}^{m} T_{i}^{2}$
	$\sum_{n} \frac{1}{n} = \frac{1}{5}$	_= 993.7	m1		for $\sum_{i=1}^{m} \frac{T_i^2}{n_i}$	
	i=1 $i=1$	$\sum_{i=1}^{m} \frac{T_i^2}{n_i} = \frac{50.5^2}{5} + \frac{33.5^2}{5} + \frac{36^2}{5} = 993.7$				i=1 · · · i
	12	000 = /0 1	6) 4.607			16.10
	$H = \frac{12}{15 \times 16} \times 9$	(6) = 1.685	A1		test stat correct 1.6 to 1.8	
	Critical value	605	B1			
	<i>H</i> < 4.605					
	No sig eviden			M1		
	that samples a					
	populations. P			A 1	10	
	usages betwee	en models do n	ot airrer	A1	12	

Q	Solution	Marks	Total	Comments
5(b)	H ₀ Samples are taken from identical populations			
	H ₁ Samples are not taken from identical populations – pop average miles per gallon greater for compact cars. 1 tail 5%	B1		Hypotheses referring to population averages also acceptable
	Compact ranks Midsize rank 6 3			
	13 4 9 10	M1		Attempt at M–Whitney – ranks as one group
	12 1 14 2 8 5	m1		for 12 correct
	7 11	m1		for total attempt (any ranks)
	$T_{\rm C}$ = 6 ++ 8=62 $T_{\rm M}$ = 3 ++ 11 = 43	m1		for U
	$U_{\rm C} = 62 - \frac{6 \times 7}{2} = 41$ $U_{\rm M} = 43 - \frac{8 \times 9}{2} = 7$	A1		one U correct
	Test stat $U = 7$ $n = 6$, $m = 8$ cr ≤ 11 $U = 7 < 11$	B1 M1		for cv correct comparison cv/U
	Reject H ₀ Significant evidence at the 5% level to suggest that the average city miles per gallon is greater for compact cars.	A1 E1√	10	reject H ₀ Conclusion in context
	Total TOTAL		75	