

General Certificate of Education

Statistics 6380

SS03 Statistics 3

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS03

SS03 (cont)

Q	Solution	Marks	Total	Comments
3	H_{0} : Samples are taken from identical populations	B1		Hypotheses referring to population averages also acceptable but require 1 tail
	H_{1} : Samples are not taken from identical populations - population average ratios differ	B1		alternative $\mathrm{B} 1, \mathrm{~B} 0$ if 1 tail but not precise wording
	1 tail 5\%			
	Ranks			
	$\begin{array}{lllllllll} 6 & 9 & 10 & 12 & 13 & 14 & 15 & 16 & 17 \end{array} 18$	M1		For ranks as one group
	$\begin{array}{llllllll}1 & 2 & 3 & 7 & 811\end{array}$	A1		All correct
	$T_{\text {non }}=6+9+\ldots \ldots+18=130$			Other alternative methods acceptable (eg ranks reversed)
	$T_{\text {heary }}=1+2+\ldots+11=41$	M1		For total of ranks attempted
	$U_{\text {non }}=130-\frac{10 \times 11}{2}=75$	M1		For U attempted
	$U_{\text {heavy }}=41-\frac{8 \times 9}{2}=5$	A1		For U correct - either
	$\begin{aligned} & \text { Test stat } U=5 \\ & n=10, m=8 \mathrm{cv}=21 \end{aligned}$	B1		For cv consistent with U
				(Upper tail cv = 59)
	$U=5<21$	m1		For comparison U / cv
	Significant evidence to reject H_{0}	A1		
	Evidence to suggest that heavy drinkers have a smaller average ratio of brain volume to skull size	E1	11	In context
	Total		11	

SS03 (cont)

Q		Solu			Marks	Total	Comments
4(a)(i)	H_{0} : Result independent of treatment H_{1} : Result not independent of treatment 1 tail 1\% Expected frequencies				B1		or equivalent
	Much imp	Hydro	Tai Chi	$\begin{gathered} \begin{array}{c} \text { Conv } \\ \text { exercise } \end{array} \\ \hline 13.86 \end{gathered}$			
	Imp	17.73	17.41	13.86	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$		E method for 3 correct
	Slight imp	10.49	10.30	8.20			7 correct
	No change	9.05	8.88	7.07			For all E correct
	$\begin{aligned} & \mathrm{ts}=\sum \frac{(O-E)^{2}}{E} \\ & =\frac{1.27^{2}}{17.73}+\frac{5.59^{2}}{17.41}+\ldots \ldots \ldots \ldots .+\frac{6.93^{2}}{7.07} \\ & =19.42 \\ & \mathrm{df}=6 \quad 1 \% \quad \mathrm{cv}=16.812 \\ & \mathrm{ts}>16.812 \end{aligned}$ Reject H_{0} Sig evidence to suggest that the outcome is not independent of the treatment.				m1 m1 A1 B1 m1		ts sum with correct denominators numerator method OK For ts in range $19.00 \sim 20.00$ For cv or $p=0.003511$ For comparison ts/cv
					A1	10	SC pooled max $4 / 10$ $\mathrm{M} 1, \mathrm{~m} 1, \mathrm{~m} 1, \mathrm{~m} 1$ only
(a)(ii)	Main sources of association: Far fewer than expected adults doing conventional classes reported that they were much improved and far more of these than expected reported no change.				E1 E1	2	For identification of any two main sources in context.
(b)(i)		Hydro	Tai Chi	$\begin{aligned} & \text { Conv } \\ & \text { land- } \\ & \text { based } \\ & \hline \end{aligned}$	B1 M1		Categories correct for table (allow correct 3×2) 4 correct
	All	55	54	43	A1	3	All correct
	Not all	9	10	13			
(ii)	H_{0} : Attendance for full six months is independent of treatment H_{1} : Attendance for full six months is not independent of treatment $1 \text { tail } 5 \%$ $\begin{aligned} & \mathrm{ts}=\sum \frac{(O-E)^{2}}{E}=1.95 \\ & \mathrm{df}=25 \% \quad \mathrm{cv}=5.991 \\ & \mathrm{ts}<5.991 \end{aligned}$ Accept H_{0} No sig evidence to doubt that attendance for the full six months is independent of treatment.				B1		
					$\begin{aligned} & \text { B1 } \\ & \text { m1 } \end{aligned}$		For cv or $p=0.37638$ For comparison ts/cv
					A1	4	Must be in context
				Total		19	

SS03 (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	From calculator $r=0.758$ Alternative $\begin{aligned} r & =\frac{129553-\left(\frac{358 \times 3088}{11}\right)}{\sqrt{3160.73} \times \sqrt{464586.18}} \\ & =\frac{29052.64}{56.22 \times 681.61} \\ & =0.758 \end{aligned}$	B3		One correct value; either $\begin{aligned} & n=11 \\ & \sum w=358 \quad \sum x=3088 \\ & \sum w^{2}=14812 \\ & \sum x^{2}=1331472 \\ & \sum w x=129553 \quad \text { M1 m1 } \\ & 0.750 \sim 0.770 \quad \text { A1 } \end{aligned}$
(ii)	From calculator $r=-0.488$ Alternative $\begin{aligned} \text { or } \mathrm{r} & =\frac{2992.8-\left(\frac{358 \times 106.8}{11}\right)}{\sqrt{3160.73} \times \sqrt{310.07}} \\ & =\frac{-483.05}{56.22 \times 17.61} \\ & =-0.488 \\ r_{w x} & =0.758 \quad r_{w y}=-0.488 \quad r_{x y}=-0.853 \end{aligned}$	B2	5	Second correct value $\begin{aligned} \sum y & =106.8 \\ \sum y^{2} & =1347 \\ \sum w y & =2992.8 \quad \mathrm{M} 1 \\ -0.480 & \sim-0.500 \quad \mathrm{~A} 1 \end{aligned}$
(b)	$\mathrm{H}_{0} \rho=0$ $\mathrm{H}_{1} \rho \neq 02$ tail 5% sig level Need only be stated once test stat $r_{w x}=0.758$ $\|\mathrm{cv}\|=0.6021 \quad n=11$ since \mid ts \|> 0.6021 Reject H_{0}	B1 B1 M1 A1		For any pair of hypotheses Allow 1 tail for $r_{w x}$ $\mathrm{H}_{0} \rho=0$ $\mathrm{H}_{1} \rho>01$ tail 5% sig For 0.6021 (or 0.5214)
	$\begin{aligned} & \text { test stat } r_{w y}=-0.488 \\ & \|\mathrm{cv}\|=0.6021 \quad n=11 \\ & \text { since } \mid \text { ts } \mid<0.6021 \\ & \text { Accept } \mathrm{H}_{0} \\ & \text { test stat } r_{x y}=-0.853 \\ & \|\mathrm{cv}\|=0.6021 \quad n=11 \\ & \text { since }\|\mathrm{ts}\|>0.6021 \\ & \text { Reject } \mathrm{H}_{0} \end{aligned}$	M1 A1 A1	7	Allow 1 tail for $r_{x y}$ or $w y$ $\mathrm{H}_{\mathrm{o}} \rho=0$ $\mathrm{H}_{1} \rho<01$ tail 5% sig or $\mathrm{cv}=-0.5214$ for 1 tail A1A1A1 can be gained in part (c)
(c)	There is significant evidence of a (positive) correlation between maximum life span and average gestation time. The longer the max lifespan, the longer the average gestation time. There is significant evidence of a (negative) correlation between average gestation time and average daily sleep time. The longer the average gestation time, the less average daily sleep time. There is no significant evidence of a correlation between maximum lifespan and average daily sleep time.	E1 E1 E1	3	Interpretation in context E1E1E1 can be gained in part (b)
	Total		15	

SS03 (cont)

