

General Certificate of Education

Statistics 6380

SS03 Statistics Unit 3

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre. Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method										
m or dM	mark is dependent on one or more M marks and is for method										
A	mark is dependent on M or m marks and is for accuracy										
В	mark is independent of M or m marks and is for method and accuracy										
Е	mark is for explanation										
	•										
√or ft or F	follow through from previous										
	incorrect result	MC	mis-copy								
CAO	correct answer only	MR	mis-read								
CSO	correct solution only	RA	required accuracy								
AWFW	anything which falls within	FW	further work								
AWRT	anything which rounds to	ISW	ignore subsequent work								
ACF	any correct form	FIW	from incorrect work								
AG	answer given	BOD	given benefit of doubt								
SC	special case	WR	work replaced by candidate								
OE	or equivalent	FB	formulae book								
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme								
–x EE	deduct x marks for each error	G	graph								
NMS	no method shown	c	candidate								
PI	possibly implied	sf	significant figure(s)								
SCA	substantially correct approach	dp	decimal place(s)								

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Jan 07

SS03

Q	Solution	Marks	Total	Comments
1	$H_0 \eta = 6$	B1		or H_0 population median = 6
	H_1 $\eta > 6$ 1 tail 5%			H_1 population median > 6
	,			or fully in words
	Difference Rank			
	X-6 + -	M1		for differences
	4 4½			(X-6 or 6-X)
	2 2			0 1 (4 11 11 11 11 11 11 11 11 11 11 11 11 11
	-1 1	m1		for ranks (1 = smallest diff) m0 if 0 = rank 1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			mu II 0 – rank 1
	5 6			
	7 8			
	3 3			
	8 9			
	6 7			
	n 1	m1F		for total of +/– ranks
	Rank totals $T_{-} = 5\frac{1}{2}$ $T_{+} = 39\frac{1}{2}$			ft if any ranks
	2 2	A1		
	Test stat $T = 5\frac{1}{2}$			
	2			
	critical value = 8 $n = 9$	B1		for cv
	T < cv	M1		for comparison ts/cv
	Reject H ₀	A 1	0	
	There is significant evidence to suggest that the median for 18-year-old females is	A1	8	
	greater than 6.			
	Total		8	

Q	Solution	Marks	Total	Comments
2(a)(i)	H ₀ Response is independent of sex	B1		
	H ₁ Response is not independent of sex			
	1 tail 1%			
	Approve Dis- Don't			
	approve care) / (1		
	Male 83.3 47.8 221.9	M1		E method for 3 correct
	Female 85.7 49.2 228.1	m1		for all E correct
	$ts = \sum \frac{(O - E)^2}{E}$			
	1			
	$= \frac{12.3^2}{83.3} + \frac{12.8^2}{47.8} + \frac{25.1^2}{221.9} +$			
	$\frac{83.3}{47.8} + \frac{221.9}{21.9}$	1		ts sum with correct denominators
	$\frac{12.3^2}{12.8^2}$ $\frac{12.8^2}{25.1^2}$	m1		ts sum with correct denominators
	$\frac{12.3^2}{85.7} + \frac{12.8^2}{49.2} + \frac{25.1^2}{228.1}$			
	= 16.0	A1		for ts in range 15.7 - 16.2
	cv df = 2 1% cv = 9.210	B1		for cv
	ts > 9.210	m1		for comparison ts/cv
	Reject H ₀			
	Sig evidence to suggest response is not	A1F	8	ft if ts is very close and method is ok
	independent of sex			
(a)(ii)	Males are much less likely than expected			
	to disapprove of the royal wedding and females are much more likely than is			
	expected to disapprove of the royal	E1		explanation in context
	wedding	151		explanation in context
	Most noticeable differences in the sexes is	E1	2	with reference to expected/observed
	that females were more likely to have an			P
	opinion of some sort about the wedding			
	whereas males were more likely not to			
	care			
() (***)	No. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	F.1		
(a)(iii)	Most adults involved did not appear to	E1	1	not men/women
	care about the royal wedding			
(b)(i)	Data in Table 2 cannot be analysed to	E1	1	mention of % or not actual frequencies
(6)(1)	investigate whether an association exists	LI	1	given
	because the raw frequencies are not			given
	supplied, only the percentages. This			
	means than a χ^2 test cannot be carried out.			
(ii)	The total number of males and the total	E1		totals required for males and females
	number of females in the sample is			
	required.			
	The raw frequencies in each category can	E1	2	how total is used
	then be found by evaluating the relevant			CC (a anyont into fragment) 2.7 D1
	percentage of the total eg 41% of the total			SC 'convert into frequencies' B1
	number of males gives the raw frequency in the first cell (male / support monarchy)			
	Total		14	
	Total		14	

0 (cont)	Solution	Marks	Total	Comments
3(a)	('difference':weekend – weekday)	Wai Ko	Total	Comments
$\mathcal{S}(a)$	• *			
	$H_0 \eta_{\text{difference}} = 0$			
	$H_1 \eta_{\text{difference}} > 0$ 1 tail 10%	B1		direction
				generous if fully worded and median /
				average
	Signs			
	+ + + - + - + + + +	M1		signs
	8 ⁺ / 2 ⁻ signs - test values	A1		test stat correct and identified
	Binomial (10, 0.5) model	M1		binomial model used and probability
				attempted
	$P(\ge 8^+) = P(\le 2^-) = 0.0547 < 0.10$	M1		comparison of Binomial probability with
	for one tail test			0.10
	Reject H ₀ .	A1		
	There is sufficient evidence, at the 10%			
	level, to suggest that the median			
	difference is greater than 0			
	Significant evidence that standardised	E1F	7	interpretation in context
	mortality ratio is greater at the weekend			ft conclusion
(b)	A Type II error would be to conclude that	B1		concept of Type II correct
	H_0 is true, that is the mortality ratio is not	<i>D</i> 1		consept of Type II confect
	higher at weekends when, in fact H_0 is	E1	2	in context
	false and the ratio at weekends is higher	1/1	4	in content
	than the weekday ratio			
	Total		9	
	Total		7	

Q Q		Solution		Marks	Total	Comments
4(a)	H ₀ Samples f	from identical	populations			or H_0 $\eta_A = \eta_B = \eta_C$
	H ₁ Samples in populations 5% sig level	not from ident	ical	B1		H_1 at least two of η_A, η_B, η_C do differ
	Ranks					
	Department A	Department B	Department C	M1		some ranks
	3	1	7	1V1 1		Some ranks
	9	2	8	A2,1		A1 for 5
	11	4	10	,		A2 for all
	14	5	12			
	15 17	6	13 16			
	1 /		10			
	$T_{\rm A} = 69$			M1		totals of some ranks
	$n_{\rm A}$ = 6	$n_{\rm B}$ = 5	$n_{\rm C} = 6$	A1		any one correct
	$\sum_{i=1}^{m} \frac{T_i^2}{n_i} = \frac{69^2}{6}$	$+\frac{18^2}{5}+\frac{66^2}{5}=$	= 1584.3	M1		
	$H = \frac{12}{17 \times 18} \times$	1584.3 – (3	× 18) = 8.13	m1		$\frac{12}{N(N+1)} \sum_{i=1}^{m} \frac{T_i^2}{n_i} - 3 (N+1)$
				A1		test stat $H = 7.80 - 8.40$
	Critical value	from $\chi_2^2 = 5$.99	B1		
	H > 5.99			M1		
	Sig evidence that samples a populations.	are not from ic	lentical	A1	12	
(b)	that at least tv	there is signification of the medianents A, B or the medianents A, B	cant evidence an scores C) do differ, it	B1		identification of B
	Managers ach average and se	ieved lower so this departm	cores on ent was a annual bonus	E1	2	explanation in context of reason B selected 'median' or 'average' required or explanation all B scores low
			Total		14	

Q	Solution	Marks	Total	Comments
5	H ₀ Samples are taken from identical			
	populations			
	H ₁ Samples are not taken from identical	B1		hypotheses referring to population,
	populations – population average time to	D.1		averages also acceptable
	become over-ripe is lower for 'chilled'	B1		for direction/explanation
	bananas 1 tail 5%			[other alternative methods acceptable]
	Sum of ranks			
	'Chilled' $2+6+5+8+1 = 22 = T_C$	m1		for totals of ranks in each group
	'Stored at 10°C'			
	$3+4+9+10+7+11 = 44 = T_{S}$			
	$U_{\rm C} = 22 - \frac{5 \times 6}{2} = 7$	m1		for Untternited
	$C_{\rm C} = 22 - \frac{1}{2} = 7$	1111		for U attempted
	$U_{\rm S} = 44 - \frac{6 \times 7}{2} = 23$			
	$C_{S} = 44 = \frac{1}{2} = 23$			
	Test stat $U = 7$	A1		for U correct, either
	cv = 5	B1		for consistent cv with U
	U > 5	M1		for comparison U/cv for any valid U/cv
	Accept H ₀	A1		
	No significant evidence at the 5% level to	E1	9	in context
	suggest that the population average time			
	to become over-ripe is lower for 'chilled'			
	bananas			
	Total		9	

Q Q			Soluti	ion			Marks	Total	Comments
6(a)(i)									(r = 0.927)
	student	1	2	3	4	5			
	micro rank	1	2	3	4	5			
	macro rank	1	2	5	7	4	M1 A1		attempt at ranks
			ı	ı			711		
	student	6	7	8	9	10			
	micro rank	6	7	8	9	10			
	macro rank	3	6	8	9	10			
	$r_{\rm s} = 0.854$	(5) (3	sf from	m calc)		В3	5	Alternative d = 0, 0, 2, 3, 1, 3, 1, 0, 0, 0 $\sum d^2 = 24$ $= 0.854(5) \text{ M1, A1}$ (2 sf and no working SC4, A0)
(a)(ii)	H ₀ Rank of marks and independed H ₁ Rank of marks and not independent	macro nt. orders macro	o-econ of mic o-econ	omics ro-ecc omics	marks nomic marks	are es	B1		H ₀ no association H ₁ association
	$cv = \pm 0.$						B1		for cv
	test stat $r_s = r_s > 0.73$		` ′	> cv			M1		for comparison ts/cv $r_s = 0.854(5)$
	Reject H ₀ Significant suggest an					l _z	A1		allow A1 if r 'close' and marks lost in (a)(i)
	orders of n macro-eco [Student w economics macro-eco	nicro-o nomic th high also h	econor s mark gher ra nas hig	nics m ks. ink ma	arks a .rk in 1	nd nicro-	E1	5	in context

Q		Solution		Marks	Total	Comments
6(b)	H_0 $\mu_{\text{difference}}$	= 0				
	H_1 $\mu_{difference}$	$\neq 0$	2 tail 5%	B1		or η or population average or words
			1			
	Student	Difference	Rank	M1		for differences
		mac-mic	- +			
	1	-10	10			
	2	4	4	1		for ranks (1 = smallest diff])
	3	6	6½	m1 m1		ties
	4	6	6½	1111		ties
	5	- 2 - 9	8			
	7	- 9 - 5	5			
	8	- 3 - 3	3			
	9	- 3	Discard			
	10	- 1	1			
	10	<u> </u>	1			
	Rank totals 7	$\Gamma = 29$	$T_{+} = 17$	m1F		
	Kalik totals I	$I_{+} - I_{1}$	A1		for total of +/– ranks	
	Test stat $T = 1$	7		AI		Tor total of 1/- failes
	critical value		9	B1		for cv
	T > cv	0 11	,	M1		for comparison ts/cv
	Accept H ₀			1111		Tor Comparison to C
		gnificant evid	ence to suggest	A1	9	
	that there is a					
	average marks	s for macro-ec	conomics and			
	micro-econon					
(c)	It appears, fro	m (a), that stu	dents who do	B1		
	well in micro-					
	macro-econor					
			idents perform	E1	2	
	better in one of					
	other. Good st					
			o pattern as to			
	which they pe	ertorm better i				
			Total		21	
			TOTAL		75	