

General Certificate of Education (A-level) June 2011

Statistics

(Specification 6380)
Statistics 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied SCA
substantially correct approach	
cf	candidate
dp	significant figure(s)
decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comments
1(a)(i)	On graph	B1		B1 accurate plot - by eye
		B1	2	B1 trend line - must be a line
(ii)	Riz effect $(49.3+66.3+70.7) / 3=62.1$	M1		M1 attempt to find Riz deviations from trend line or moving average
		m1		m1 method, ignore sign
		A1	3	A1 62.1 (60~64)
(iii)	$555+62.1=620$	B1		B1 trend 555 (545 ~ 565)
		M1	3	M1 'their' trend + 'their' seasonal effect A1 $620(605 \sim 630)$
(b)				
	Week 18 - trend line below 640 for weeks 16 and 17. Attendances for Ed	B1		B1 week 18
	and Ja not likely to be above trend line. Week 18 trend line about 600 and Riz	E1		E1 justification for any of weeks 16,17 , 18
	likely to be more than 40 above trend line.	E1	3	E1 full explanation
	Total		11	
2(a)(i)	$\begin{aligned} & \mathrm{E}(X)=100 \times 0.22+200 \times 0.31+300 \times \\ & 0.21+400 \times 0.12+600 \times 0.14=279 \end{aligned}$	$\overline{\text { M1 }}$		$\begin{aligned} & \text { M1 method } \\ & \text { A1 } 279 \text { CAO AG } \end{aligned}$
(ii)	$\begin{aligned} \mathrm{E}\left(X^{2}\right)=100^{2} \times 0.22+200^{2} \times & 0.31+300^{2} \\ \times 0.21+400^{2} \times 0.12+600^{2} \times & 0.14 \\ & =103100 \end{aligned}$			
	$\mathrm{V}(\mathrm{X})=103100-279^{2}=25259$	M1		
	s.d. $=\sqrt{ } 25259=158.9$	A1	4	B2 159 (158.5 ~ 159.5) or M1A1
				SC: allow B1 for variance $=25259$
(b)	Standard deviation would increase as distribution would be more spread out	B1	2	B1 increase E1 reason
(c)	Standard deviation would be less than for	B1		B1 less than X
	X. Nearly all cars have parked for free so there is little variability in the distribution.	E1	2	E1 reason
	Total		8	

Q	Solution		Mark	Total	Comments
3(a)	3509000		B2,1	2	$\begin{aligned} & \text { B2 } 3509000 \\ & \text { allow B1 for } 3509 \end{aligned}$
(b)	$\begin{aligned} \text { males }<1+\text { females }<1 & =471+466 \\ & =937 \text { thousand } \end{aligned}$ total $<1=938$ thousand				
	This is consistent with rounding error eg if 471400 males and 466400 females, total $=937800$ which rounds to 938 thousand		E1 E1	2	E1 no, E1 could be due to rounding error
(c)(i)	In each census there are more males than females under 1 enumerated. This suggests that the probability of a baby being female is less than 0.5 . The 'fact' is not supported.		B1 E1	2	B1 not supported E1 explanation
					SC: allow B1 supported because proportion close to 0.5
(ii)	In each census th females than mal This supports the females live lon	many more 75 and over. that on average males.	B1 E1	2	B1 supported E1 explanation
(d)(i)	Males aged	Thousands			
	under 15	5689	M1		M1 reasonable attempt - allow wrong
	15-29	5623			year, wrong units, wrong section
	30-44	6645			
	45-59	5534	A1		A1 three correct 3sf
	60-74	3720			
	over 74	1620	A1	3	A1 all correct 3sf
(ii)	On graph		B1		B1 vertical axis correctly labelled starting at 0
			B1		B1 accurately plotted points
			B1	3	B1 vertical line starting at 0
(iii)	Up to age 60 similar numbers in each age group except for 30-44 which has more than the others. After age 60 there are less in the groups as there will be more deaths in these groups.		E1		E1 age groups similar E1 more in 30-44
			E1	2	or any sensible comment
(iv)	Purpose of diagram is to assist interpretation of data. Drawing a line diagram with unequal age groupings would make interpretation extremely difficult.		E1	1	E1 unequal age groups
		Total		17	

Q	Solution	Mark	Total	Comments
5(a)	$\mathrm{H}_{0}: \mu=700 \quad \mathrm{H}_{1}: \mu \neq 700$	B1		B1 one correct hypothesis
	$\bar{x}=699.6$	B1		B1 699.6 CAO
	$z=(699.6-700) /(2.1 / \sqrt{ } 6)=-0.467$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$		M1 use of $2.1 / \sqrt{6}$ m 1 method for z - ignore sign A1 $-0.467(-0.46 \sim-0.47)$
	c.v. ± 1.96	B1		B1 ± 1.96 - ignore sign
	Accept H_{0}	A1 \checkmark		A1 \checkmark conclusion - allow even if contradicted later; also allow for valid comparison with +ve test statistic
	Conclude that there is no significant evidence to doubt that the mean is 700 mm	A1	8	A1 in context - needs previous A1 \checkmark plus something additional to mean $=700$; disallow for +ve test statistic
(b)	$\mathrm{H}_{0}: \mu=700 \quad \mathrm{H}_{1}: \mu \neq 700$	B1		B1 both hypotheses correct - needs μ or 'population'
	$z=(701.34-700) /(2.1 / \sqrt{40})=4.04$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		M1 method for z - ignore sign A1 4.04 (4~4.04)
	c.v. ± 1.96			
	Reject H_{0}	A1 \checkmark		A1 \checkmark conclusion - allow even if contradicted later; also allow for valid comparison with + ve test statistic
	Conclude that there is significant evidence to conclude that the mean is not equal to (greater than) 700 mm	A1	5	A1 in context - needs previous A1 \checkmark plus something additional to mean $\neq 700$; disallow for +ve test statistic
(c)(i)	Neither.	B1		B1 neither
	Risk of Type I error is 5\% regardless of sample size (or zero if H_{0} untrue).	E1		E1 explanation
(ii)	Larger sample would lead to a smaller risk of Type II error because s.d. $/ V_{n}$ is smaller and so more likely to detect a deviation from 700 (or the same if H_{0} true).	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	4	B1 sample of 40 E1 explanation - allow for anything which implies a correct definition of Type II error
	Total		17	

