

General Certificate of Education June 2010

Statistics

SS02

Statistics 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x \mathrm{EE}$	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS02

SS02 (cont)

Q	Solution	Marks	Total	Comments
3(a) (b)	random variation about an upward linear trend short term variation about a downward linear trend	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	4	B1 linear - may be earned in (b) B1 random B1 downward and upward in (i) B1 short term/cyclical
	Total		4	
4(a)	$\begin{aligned} & \mathrm{H}_{0}: \mu=135.0 \mathrm{H}_{1}: \mu \neq 135.0 \\ & \bar{x}=135.556 \\ & \mathrm{z}=(135.556-135) /(0.45 / \sqrt{9})=3.70 \end{aligned}$ $\text { c.v. } \pm 1.96$ Reject H_{0} Conclude that there is significant evidence that the mean length of components on that Monday was not equal to/greater than 135 cm c.i. $135.26 \sim 135.85$ compare with 135.0 p-value 0.00022 compare with 0.05 or 0.00011 compare with 0.025 A Type 1 error would be to conclude the mean length of components was not 135 cm when in reality it was 135 cm .	B1B B1 M1m1 A1 B1 A1 \downarrow A1 \checkmark E1 E1	(${ }^{9}$	B1 one correct hypothesis B1 both hypotheses correct B1 135.556 ($135.5 \sim 135.6$) M1 Use of $0.45 / \sqrt{9}$ ml method for z - ignore sign A1 3.70 ($3.7 \sim 3.74$) $\text { B1 } \pm 1.96 \text { - ignore sign }$ Al $\sqrt{ }$ conclusion - must be compared with correct tail of normal. Disallow for contradiction A1 \checkmark in context needs previous A1 \checkmark E1 idea of Type 1 error E1 in context
	Total		11	
5(a)(i)	327 million tonnes	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	B2 327 million tonnes acf allow B1 for 327
(ii)	1254-776 = 478 million tonnes allow 1254-479-298=477	M1A1	2	M1 1254-776 (or - 479-298) A1 478 or 477 million tonnes - only penalise omission of million tonnes once
(iii)	$1215 / 77=16$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	M1 1215/77 or 1162/77 A1 $16(15.5 \sim 16)$
(b)	Maximum reserves are lower in 2006 than in 1995	E1		E1 lower in 2006
	Proven reserves are about the same (a bit larger) proportion of the total in 2006 than in 1995 Probable reserves are a smaller proportion of the total in 2006 than 1995	E1 E1	3	E1Proven similar (a bit larger) proportion in 2006 E1 Probable smaller proportion/ possible larger proportion in 2006
	Possible reserves about same in 1995 and 2006			Also allow a mark for numerical statements e.g. proven about a third in 2006/ total about double in $1995-\max$ 2 marks for 3 similar points
	Total		10	

SS02 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$1-0.8946=0.105$	M1		M1 $\mathrm{P}(6$ or more $)=1-\mathrm{P}(5$ or fewer $)$
(ii)	0.0408	$\begin{gathered} \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	4	A1 0.105 ($0.105 \sim 0.106$) M1 Attempt to find $\mathrm{P}(0)$ A1 0.0408 ($0.0407 \sim 0.041)$
(b)(i)	0.2689	B1		B1 0.269 (0.2688~0.269)
(ii)	$\begin{aligned} & \text { Poisson mean } 3.2+3.8=7 \\ & \mathrm{P}(<2)=\mathrm{P}(1 \text { or fewer })=0.0073 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	4	M1 attempt to use Poisson mean $3.2+3.8$ or equivalent m 1 completely correct method A1 0.0073 ($0.007 \sim 0.0073$)
(iii)	In this week the total of the number who did not attend on Tuesday and the number who did not attend on Thursday was 1 .	E1		E1 Policy effective
	As shown in part (b) this was an extremely unlikely occurrence prior to the change of policy. Hence it is likely that the change of policy has improved attendance.	E1 E1	3	E1 Attempt at reference to relevant probability E1 complete answer
(c)(i)	Poisson has no upper limit. Number of absentees cannot exceed size of squad (probably about 16)	E1		E1 no upper limit
(ii)	Same member may miss both sessions due to illness/holiday	E1	2	E1 reason
	Total		13	
7(a)	Number shops 000 to 419 Select 3-digit random numbers Ignore repeats and >419 Select corresponding shops	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \\ & \text { E1 } \\ & \text { E1 } \end{aligned}$	4	E1 number 000 to 419 or equivalent E1 3-digit random numbers E1 ignore >419 - consistent with their numbering E1 ignore repeats
(b)(i)	(B) equally likely (C) not all subsets possible	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	3	E1 stratified E1 equally likely Allow 'yes,'disallow 'likely'
		E1		E1 reason
(ii)	(A) systematic (B) equally likely	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	3	E1 systematic E1 equally likely.
	(C) not all subsets possible	E1		E1 reason
(iii)	Shops with largest electricity consumption are likely to have the largest potential savings. Therefore	E1		E1 shops with largest consumption selected
	sensible to audit these first	E1	2	E1 largest potential saving
	Total		12	
	TOTAL		75	

