

General Certificate of Education

Physics 2456

Specification B: Physics in Context

PHYB5 Energy under the Microscope

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

NOTES

Letters are used to distinguish between different types of marks in the scheme.

M indicates OBLIGATORY METHOD MARK

This is usually awarded for the physical principles involved, or for a particular point in the argument or definition. It is followed by one or more accuracy marks which cannot be scored unless the M mark has already been scored.

C indicates COMPENSATION METHOD MARK

This is awarded for the correct method or physical principle. In this case the method can be seen or implied by a correct answer or other correct subsequent steps. In this way an answer might score full marks even if some working has been omitted.

A indicates ACCURACY MARK

These marks are awarded for correct calculation or further detail. They follow an M mark or a C mark.

B indicates INDEPENDENT MARK

This is a mark which is independent of M and C marks.

ecf is used to indicate that marks can be awarded if an error has been carried forward (ecf must be written on the script). This is also referred to as a 'transferred error' or 'consequential marking'.

Where a correct answer only (**cao**) is required, this means that the answer must be as in the Marking Scheme, including significant figures and units.

cnao is used to indicate that the answer must be numerically correct but the unit is only penalised if it is the first error or omission in the section (see below).

Marks should be awarded for **correct** alternative approaches to numerical question that are not covered by the marking scheme. A correct answer from working that contains a physics error (PE) should not be given credit. Examiners should contact the Team Leader or Principal Examiner for confirmation of the validity of the method, if in doubt.

GCE Physics, Specification B: Physics in Context, PHYB5, Energy under the Microscope

Question 1					
(a)	(i)	the pressure is increasing	B1	2	
		at constant volume/it is being heated/temperature is rising	B1	2	
(a)	(ii)	fuel is being burned/ignited	B1	1	
(a)	(iii)	4 to 5	B1	1	
(b)	(i)	change in internal energy	B1	1	
(b)	(ii)	Q	B1	1	
(b)	(iii)	the gas is compressed rapidly	B1	•	
		no heat exchange/escape of heat with surroundings owtte	B1	2	
(c)	(i)	exhaust 1314 J (1310 J)	B1		
		useful 486 J (490 J)	B1	2	
		(however many sf used the total must be 1800 J)		2	
		allow 1 for exhaust + useful = 1800 J			
(c)	(ii)	attempt to substitute data efficiency = $\frac{T_H - T_C}{T_H}$	C1	2	
		430 (429) K (156°C)	A 1	_	
(c)	(iii)	1800/34 MJ seen or calculates energy/cm ³ = 34000 (J)	C1	0	
		0.053 (0.0529) (cm ³)	A 1	2	
(c)	(iv)	fuel used per second = 4 × 15 × 0.053 (= 3.18 cm ³)	C1		
		time 1 litre lasts = 1000/3.18 = 314 or 315s (16.7/their (iii))	A 1		
		or		2	
		$34 \times 10^6 \div (1800 \times 4 \times 15)$	C1		
		314.8s	A 1		
(c)	(v)	use of distance = speed × time (condone mixed units)	C1	0	
		7.4 to 7.43 km ecf from (iv) (0.0236 × (iv))	A 1	2	
			Total	18	

Question 2				
(a)	(i)	A to B/to the right/toward B	B1	1
(a)	(ii)	F = BQv	C1	
		correct substitution	A 1	3
		$4.8 \times 10^{-15} (N)$	A 1	
(a)	(iii)	$E \text{ required} = 30 \text{ kV m}^{-1} (31.3 \text{ if } 5 \times 10^{-15} \text{ used})$	C1	
		use of $E = V/d$	C1	3
		540 (V) to 563 (if 5 × 10 ⁻¹⁵ used)	A 1	
(a)	(iv)	the force produced must be opposite to the magnetic force	B1	_
		B (allow ecf from (i))	B1	2
(b)	(i)	use of mass = 22.9 × 1.661 × 10 ⁻²⁷	C1	
		$Bqv = mv^2/r$	C1	
		substitution allow incorrect mass or <i>r</i> calculated correctly 0.114 m	C1	4
		distance = 0.23 (0.228) (m)	A 1	
(b)	(ii)	isotope masses differ by 3 in 15000 or 1 in 5000	B1	
		masses differ by less than 1 in 1000 so ions cannot be separated	B1	2
(c)		substitution in relativistic formula	C1	
		correct to incorrect sf	A 1	3
		$2.79 \times 10^7 (\text{m s}^{-1})$	A 1	
			Total	18

Que	estion 3			
(a)		correct curvature starting at (0,0)	M1	
		asymptotic to 2.8	A 1	2
(b)	(i)	use of $V = V_0 e^{-t/CR}$ (allow incorrect powers of 10)	B1	
		correct substitution including powers of 10	B1	
		$V = 2.8e^{-550 \times 10^{-6}/10 \times 10^{-6} \times 510}$	B1	3
		2.5(1)(V)		
		(may calculate Q_0 , final Q and then final V)		
(b)	(ii)	use of Q = VC allow any voltage	C1	
		correct calculation of one charge with unit (or $Q = C \times 0.3$)	C1	3
		2.9 or 3.0 μC (allow 1 or 2 sf) 2.9 × 10 ⁶ (c)	A 1	
(b)	(iii)	battery capacity = 0.35 × 60 × 60 (1260 C)	C1	
		clear attempt using battery capacity/charge or 7.0 – 7.3 × 10 ⁶ min or 4.2 × 10 ⁸ s (ecf 1260/their (b)(ii))	C1	3
		13.3 to 13.8 years (allow eg 13 years 10 months or 13y to 14y)	A 1	
(c)		any 2 from		
		to fix the pulse frequency (condone eg to fix the heart rate)	B1	2
		used as a timing device	B1	2
		frequency of the pulses depends on CR	B1	
			Total	13

Question 4				
(a)	(i)	as a tracer to track/label elements that are used by the body	B1	1
(a)	(ii)	any 2 from		
		gamma sources usually have short half-lives	B1	2
		half-life is longer than usual	B1	2
		nucleus remains in excited state for a (relatively) long time	B1	
(a)	(iii)	$\stackrel{99}{_{42}Mo} \rightarrow \stackrel{99m}{_{43}Tc} + \stackrel{0}{_{-1}\beta} + \overline{v}$		
		Z correct	B1	3
		A correct	B1	3
		antineutrino	B1	
(b)	(i)	use of decay constant = $0.69/T_{1/2}$ or $A = \lambda N$	C1	
		$\lambda = 3.19 \times 10^{-5} (s^{-1})$	A 1	3
		1.1 × 10 ¹³ atoms	A 1	
(b)	(ii)	mass = moles × 6.0×10^{23} or moles = (b)(i)/6 × 10^{23}	C1	0
		1.8 × 10 ⁻⁹ g or 1.79 × 10 ⁻⁹ g	A 1	2
(b)	(iii)	any 3 from		
		moving image has to be produced quickly	B1	
		moving image needs high intensity radiation/large number of photons detected per second	B1	
		gamma intensity decreases (exponentially) with time	B1	3
		reference of biological half-life	B1	-
		build up of isotope (over time) in particular regions facilitates production of static images	B1	
		static images can be produced by exposure of film/CCD over a long time	B1	
			Total	14

Que	stion 5			
(a)	(i)	2	B1	1
(a)	(ii)	28.292 (MeV)	B1	1
(a)	(iii)	binding energy of 1 deuteron = 2 × 1.113 (MeV)	B1	
		BE of three deuterons = 6.678 MeV	B1	4
		increase in binding energy = (their (ii) – 6.678) (21.6) (MeV)	B1	4
		their MeV × 1.6 × 10^{-13} (J) (3.46 × 10^{-12} J)	B1	
(b)	(i)	any 4 from		
		deuterons (and tritium) are positively charged	B1	
		there is a repulsive force between the deuterons (or between deuterons and tritium)	B1	
		potential energy increases as the deuterons approach each other or KE falls as they approach	B1	4
		binding energy of tritium is less than that of two deuterons	B1	
		energy input is needed	B1	
		deuterons will have higher energy at higher temperatures	B1	
		need to be close as strong force is short range	B1	
(b)	(ii)	any 4 from		
		fission uses uranium	B1	
		uranium supply is limited	B1	
		fission reaction produces radioactive waste	B1	
		deuterons are plentiful in water/almost limitless supply of fuel	B1	4
		energy released for given mass of fuel is greater	B1	
		risk reduced	B1	
		with example (radiation leak/meltdown/possible explosion)		
			Total	14

Question 6				
(a)	(i)	$1.2 \times 10^{11} \times 7 \times 10^{12}$ s	C1	
		energy = 8.4 × 10 ²³ eV	C1	3
		134 kJ 1.34 × 10 ⁵ (J)	A 1	
(a)	(ii)	time taken in stationary frame of reference = 9.0 × 10 ⁻⁵ s	B1	
		use of $t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	B1	3
		1.27 µs (given to 3 or more sfs)	B1	
(b)		idea of KE changing into mass of new particles	B1	
		two beams give twice the KE available or when two beams collide head-on all KE of colliding particles converted	B1	2
(c)	(i)	correct substitution in $Pv = NkT$	B1	
		number per $m^3 = 3.81 \times 10^{14}$	B1	
		$10^6 \text{ cm}^3 = 1 \text{ m}^3 \text{ so number per cm}^3 = 3.81 \times 10^8 = 381 \text{ million}$	B1	
		or		3
		correct substitution in $pV = nRT$	B1	
		number of moles = 6.36×10^{-10} ; × 6.02×10^{23}	B1	
		$10^6 \text{ cm}^3 = 1 \text{ m}^3 \text{ so number per cm}^3 = 3.81 \times 10^8 = 381 \text{ million}$	B1	
(c)	(ii)	$p = \frac{1}{3}mn < c^2 > \text{ or } pV = \frac{1}{3}Nm < c^2 > \text{ or } \frac{1}{2}m < c^2 > = \frac{3}{2}kT$	C1	
		$1 \times 10^{-8} = 0.33 \times 4.8 \times 10^{-26} \times 400 \times 10^{12} < c^2 >$ or $< c^2 > = 1563$ to 1578 or 1640 to 1657	C1	3
		39.5 – 39.7 or 40.5 (m s ⁻¹) not 41	A 1	
(d)		resistance falls as temperature is lowered	B1	
		at the critical temperature	M1	3
		resistance falls to/becomes zero or is zero at and below this temperature	A 1	-

(e)	The marking scheme for this question includes an overall assessment for the quality of written communication (QWC).	
	There are no discrete marks for the assessment of QWC but the candidates QWC in this answer will be one of the criteria used to assign a level and award the marks for this question.	
	Level 3 – Good	
	claims supported by an appropriate range of evidence	
	good use of information or ideas about physics, going beyond those given in the question	5-6
	argument well structured with minimal repetition or irrelevant points	
	accurate and clear expression of ideas with only minor errors of grammar, punctuation and spelling	
	Level 2 – Modest	
	claims partly supported by evidence	
	good use of information or ideas about physics given in the question but limited beyond this, the argument shows some attempt at structure	3-4
	the ideas are expressed with reasonable clarity but with a few errors of grammar, punctuation and spelling	
	Level 1 – Limited	
	valid points but not clearly linked to an argument structure	
	limited use of information about physics	1-2
	unstructured	
	errors in spelling, punctuation and grammar or lack of fluency	
	Level 0	0
	incorrect, inappropriate or no response	J

	Total	22
for higher band must address issues of evacuation and cooling and include comments on how pressure is produced		
change in momentum per collision is lower		
each molecule collides less often with walls		
lower temperature reduces the speed of the molecules		
evacuation reduces number of molecules in gas so fewer colliding		
more molecules per sec means increased pressure		
momentum change depends on speed of molecules		
pressure caused by momentum change of molecules colliding with walls		
examples of the sort of information or ideas that might be used to support an answer:		