

General Certificate of Education (A-level) June 2012

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\overline{x} = \frac{\sum x}{n} = \frac{546}{15} = \frac{182}{5} = 36.4$	B1		oe
	$s^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1} = \frac{1407.6}{14} = 100.54$ (or $s = 10.03$)	B1		$\sigma^2 = 93.84$ or $\sigma = 9.687$ iff $\sigma/\sqrt{14}$ used below
	$t_{crit} = \pm 2.624$	B1		ignore signs for t_{crit} (allow $t = 2.62$) (if z used then $\mathbf{max}(B1B1B0 \text{ M0A0A0})$
	98% CI for μ:			their $\overline{x} \pm t_{14} \times \frac{\text{their } s}{\sqrt{15}}$ or
	$36.4 \pm 2.624 \times \frac{s}{\sqrt{15}} $ $(29.6, 43.2)$	M1		their $\overline{x} \pm t_{14} \times \frac{1}{\sqrt{15}}$ their $\overline{x} \pm t_{14} \times \frac{\text{their } \sigma}{\sqrt{14}}$
	36.4 ± 6.8	A1ft		(allow any of the following for t_{14} : 1.345; 1.761; 2.145; 2.624; 2.977)
	= 29.6,43.2	A1	6	cao
(b)	40.0 ∈ C.I.	E1ft	2	Must refer to 40 (dep M1)
	⇒ no change	E1ft	2 8	Dep on previous mark
2(a)	II 40		<u> </u>	
2(a)	$H_0: \mu = 4.0$ $H_1: \mu > 4.0$	B1		(both)
	$z = \frac{4.2 - 4}{4.2}$	M1		Alternative:
	$z_{calc} = \frac{4.2 - 4}{1.1 / \sqrt{40}}$			$P(\overline{X} > 4.2) = P(Z > 1.15)$ M1A1
	=1.15	A1		awrt
	$z_{crit} = 1.6449$	В1		= 1 - 0.87493 = 0.125 B1
				$0.125 > 0.05 \Rightarrow \text{ accept H}_0 \text{ Adep1}$
	Accept H ₀ [or Reject H ₁]	A1		Dep on B1M1B1
	Insufficient evidence at 5% level to support Julian's claim	E1	6	Dep on previous mark
(b)	Type II error. Accepted H_0 when H_0 was false (oe)	B1ft E1	2	Follow through on conclusion in (a) Dep on previous mark
				If Reject H ₀ in (a) then: No error (B1ft)
				Rejected \mathbf{H}_0 when \mathbf{H}_0 was false (oe) (E1)
	Total		8	

Q	Solution	Marks	Total	Comments
3(a)	for $-5 \le x \le 15$ $f(x) = \frac{d}{dx}F(x) = \frac{d}{dx}\left(\frac{x+5}{20}\right) = \frac{1}{20}$	B1	1	AG
	(- /	Di	1	
(b)(i)				Alternative:
	$=1-\frac{12}{20}$			Use of $f(x) = \frac{1}{20}$ or graph \Rightarrow
	$= \frac{2}{5} \text{ or } \left[\frac{8}{20}; \frac{4}{10}; 0.4 \right]$	B1	1	$P(X \ge 7) = \frac{1}{20} \times (15 - 7) = \frac{2}{5}$ (oe)
(ii)	$P(X \neq 7) = 1$	B1	1	cao
(iii)	$E(X) = \frac{1}{2}(-5+15) = 5$	B1	1	Alternative:
	_			$E(X) = \int_{-5}^{15} \frac{x}{20} dx = \left[\frac{x^2}{40} \right]_{-5}^{15}$
				$=\frac{1}{40}(225-25)$
				$= \frac{1}{40} \times 200$ $= 5 \qquad \mathbf{B1} \text{ (cao)}$
(iv)	$E(3X^{2}) = \int_{-5}^{15} \frac{3x^{2}}{20} dx$ (ignore limits)	M1		
		A1		correct limits seen / used
	$168\frac{3}{4} + 6\frac{1}{4}$			
	=175 Alternative:	A1	3	(cao) (allow 174.9)
	$Var(X) = \frac{1}{12}(155)^2 = \frac{400}{12}$ (oe)	(B1)		$E(3X^2) = 3E(X^2)$
	$E(3X^2) = 3 \times \left[\frac{400}{12} + 5^2\right]$	(M1)		$= 3 \times \left[\left\{ \text{their Var}(X) > 0 \right\} + \left\{ \text{their E}(X) \right\}^2 \right] used$
				(⇒ M1)
	=175	(A1)		
	Total		7	

Q				Soluti	ion		Marks	Total	Comments
4(a)		ı		1					
	r	1 .5	.24	3 .144	4	5			
	p	.5	.24	.144	.0864	0.0296			
	0.4×0	0.6=	0.24						
	0.24×						B2,1	2	B1 for any 1 correct (unsimplified) (B1) B2 all correct and simplified
	0.144	×0.6	0 = 0.0)864					B2 an correct and simplified
(b)	P(fev	ver th	nan 3	bedroo	ms are r	rented)			Alternative:
					= P	$(R=1,2) \Rightarrow$			P(fewer than 3 not rented)
	P(fev	ver tl	nan 3	bedroo	ms not 1	rented)			= P(0, 1 or 2 not rented) = P(5, 4 or 3 are rented)
	`				= 1-	P(R=1,2)	M1		= P(R = 3, 4, 5) M1
	=1-1	P(1 o	r 2 ro	oms ar	e rented)			$p = 0.4 \times 0.6^2 + 0.4 \times 0.6^3 + 0.0296$
	=1-	•			,	,	m1		$= 0.144 + 0.0864 + 0.0296 \qquad m1$
		_	$(2) \leq 0$	0.4704	value fro	m table used]	1111		[or their $p(3) + p(4) \le 0.4704$ value from table used]
	=1-0 = 0.26						A 1	3	= 0.26 (cao) A1
	-0.20	J					A1	3	, ,
(c)(i)	E(p)	_ 0 4	5 v 1 ı	0.4×0	642				[SC 0.74 for B1]
(C)(1)	E(K)			$0.4 \times 0.$		3			
					$3+0.4\times$	$0.6^3 \times 4$	3.54		$\sum_{i=1}^{5} r_i \times P(R = r_i) \text{ from their table}$
	-0.5		0.029		144×3+	0.0864×4	M1		
		.029		2 1 0.1	177 / 3	0.000+ ^ +			
	1 0	.02)	0 / 5						
	_				0.3456	⊦ 0.148			(0.5+1.2576+0.148)
	$=\frac{1}{2}$	$+\frac{12}{25}$	$\frac{1}{5} + \frac{54}{125}$	$\frac{1}{5} + \frac{216}{625}$	$+\frac{37}{250}$				
		,					A1	2	[awfw 1.9 to 1.91] $\left[1\frac{566}{625}\right]$
	$\ddot{\cdot}$	E(I)	R)=1	.9056			AI	2	[4474 1.5 to 1.51] [625]
(ii)	$E(R^2)$)=0	$.5 \times 1^2$	+0.4×	0.6×2^2				[0.5 + 0.96 + 1.296 + 1.3824 + 0.74]
	(′			$+0.4 \times 0$	$0.6^3 \times 4^2$			
			0.0296						
	$E(R^2)$						B1		AG
	(,							
	Var(R) =	4.878	4-1.90	056^2		M1		$4.8784 - \text{their E}^2(R)$
	, i	(=	1.247	708864					
		_ = ;	1.25 (3sf)			A1	3	(awfw 1.23 to 1.25)

Q	Solution	Marks	Total	Comments
(d)	$E(M) = 1250E(R) - 282$ $= 1250 \times 1.9056 - 282$ $= 2100$	B1		cao
	$Var(M) = 1250^2 \times [4.8784 - 1.9056^2]$	M1		$1250^2 \times \text{their Var}(R) > 0 \text{ in (c)(ii)}$ (1 948 473 to 1 953 125)
	$sd(M) = 1250 \times \sqrt{1.24708864}$			$\operatorname{sd}(M) = \sqrt{1948437} = 1395.9$ $\left(\sqrt{1953125} = 1397.5\right)$
	=1395.91	A1	3	(awfw 1395 to 1400)
	Total		13	

NIS2D	Solution	Marks	Total	Comments
5(a)(i)	$P(X \ge 9) = 1 - P(X \le 8)$			1 - 0.6530 = 0.347 (B1)
	=1-0.5231			
	=0.4769	B2,1	2	awfw 0.476 and 0.477
(ii)	$P(5 < X < 10) = P(X \le 9) - P(X \le 5)$			
	=0.653-0.1496			
	=0.5034	B3,2,1	3	awfw 0.503 to 0.504
				0.7634 – 0.1496 = 0.613 to 0.614 (B2) 0.6530 – 0.2562 = 0.397 to 0.398 (B2) 0.7634 – 0.2562 = 0.507 to 0.508 (B1) α – 0.1496 or 0.653 – α (B1) iff 0
				α 0.1450 of 0.055 α (B1) iii 0 < p < 1
(b)	$P(Y < 2) = P(Y \le 1) = P(Y = 0 \text{ or } Y = 1)$			0.8 to 0.81 (B1)
	$= e^{-1.5} + e^{-1.5} \times 1.5$ $[0.2231 + 0.3347]$ $= 0.5578254$	M1		(both)
	=0.5576254 = 0.558	A1	2	awfw 0.557 to 0.56
	0.330	Ai	2	uwiw 0.557 to 0.50
(c)(i)	$\lambda = 8.5 + 1.5 = 10$	B1	1	Allow $P(10)$ or $Po(10)$
(ii)	$P(T > 16) = 1 - P(T \le 16)$			
	= 1 - 0.9730 $= 0.027$	M1 A1	2	
(iii)	$p = {}^{3}C_{2}0.027^{2} \times 0.973$	M1		for either term correct
	$+0.027^{3}$ $=0.002128+0.00001968$	M1		for addition of the two correct terms
	= 0.0021 [4 dp]	A1	3	0.0021 or 0.0022 [iff M1M1 (+ 4dp)]
	Alternative: $p = 1 - P(X \le 1)$			
	P(X=0) + P(X=1)			
	$= 0.973^{3} + 3 \times 0.973^{2} \times 0.027$ $= 0.921167 + 0.076685$	(M1)		for either term correct
	p = 1 - 0.99785	(M1)		for 1 – [sum of two correct terms]
	= 0.0021	(A1)		0.0021 or 0.0022 [iff M1M1 (+ 4dp)]
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)	H ₀ : No association between A level grade and class of degree H ₁ : Association between A level grade and class of degree	В1		At least H ₀ correct
	$\begin{array}{c cccc} O_i & E_i \\ \hline 20 & 11.6 \\ 9 & 17.4 \\ \hline 36 & 36.4 \\ \hline 55 & 54.6 \\ \hline 22 & 28 \\ \hline 48 & 42 \\ \hline 2 & 4 \\ \hline 8 & 6 \\ \hline 200 & 200 \\ \end{array}$	M1		For E_i 's attempted
	Combine Class 2(ii) and 3	M1		For combining attempted
	20 11.6 8.4 6.0827 9 17.4 -8.4 4.0552 36 36.4 -0.4 0.0044 55 54.6 0.4 0.0029 24 32 -8 2.0 56 48 8 1.3333	M1		For final column attempted
	200 200 0 13.47	A1		(awrt 13.5)
	$v = 2 \chi_{1\%}^{2}(2) = 9.210$	B1 B1		$[\nu = 3 \text{ with } \chi^2 = 11.345 \text{ (B0B1ft)}]$
	Reject H ₀	A1		Dep on B1 M1M1M1 B1B1, not A1
	Fiona's belief justified	E1	9	Dep on B1 M1M1M1 B1B1, not A1
(b)	Fewer than expected gained a Class 1 degree having gained grade B in A-level Mathematics.	E1		
	More than expected gained a Class 2(ii) degree having gained grade B in A-level Mathematics.	E1	2	correct comments (see below)
	1 2(i) 2(ii) 3 comb 9 55 48 8 56 17.6 54.6 42 6 48 A B C D E			A: fewer than expected B: as expected C: more than expected D: more or similar than expected E: more than expected
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	1150			
	08 08 07 08 08 09 04 03 03 02 01	B2,1	2	Straight line from $(1, 0.5)$ to $(3, \frac{1}{6})$. Horizontal straight line from $(3, \frac{1}{6})$ to $(5, \frac{1}{6})$.
(b)	$E(X) = \frac{1}{6} \int_{1}^{3} x(4-x) dx + \frac{1}{6} \int_{3}^{5} x dx$	M1		ignore limits (both parts attempted)
	$= \frac{1}{6} \left[2x^2 - \frac{x^3}{3} \right]_1^3 + \frac{1}{6} \left[\frac{x^2}{2} \right]_3^5$	A1		ignore limits (both correct)
	$= \frac{1}{6} \left[\left(18 - 9 \right) - \left(2 - \frac{1}{3} \right) \right] + \frac{1}{6} \left[\frac{25}{2} - \frac{9}{2} \right]$			
	$=\frac{1}{6}\left[7\frac{1}{3}+8\right]$	m1		use of correct limits. dep on M1A1
	$=2\frac{5}{9}$	A1	4	(AG)
(c)(i)	$P(X > 2.5) = \frac{1}{3} + \frac{1}{2} \times \left(0.25 + \frac{1}{6}\right) \times \frac{1}{2}$	M1		Or $1 - \int_{1}^{2.5} \frac{1}{6} (4 - x) dx = 1 - \left[\frac{1}{6} \left(4x - \frac{x^2}{2} \right) \right]_{1}^{2.5}$
	$=\frac{7}{16}$	A1	2	cao (0.4375)
(ii)	$P(1.5 < X < 4.5) = \frac{1}{2} \times \left(\frac{5}{12} + \frac{1}{6}\right) \times 1.5$ $+ (4.5 - 3) \times \frac{1}{6}$	M1		Or $\int_{1.5}^{3} \frac{1}{6} (4-x) dx + \int_{3}^{4.5} \frac{1}{6} dx$
	$=\frac{7}{16}+\frac{1}{4}$	A1		
	$=\frac{11}{16}$	A1	3	cao (= $\frac{11}{16}$ or 0.6875)
(iii)	P(X > 2.5 and 1.5 < X < 4.5) = $P(2.5 < X < 4.5)$			$\int_{2.5}^{3} \frac{1}{6} (4-x) dx = \left[\frac{1}{6} \left(4x - \frac{x^2}{2} \right) \right]_{2.5}^{3} = \frac{5}{48}$
	$= \frac{1}{2} \times \left(0.25 + \frac{1}{6}\right) \times 0.5 + \frac{1}{4}$ $= \frac{5}{48} + \frac{1}{4}$	M1		
	$48 4 = \frac{17}{48}$	A1	2	cao (0.35416)
(iv)	$P(X > 2.5 1.5 < X < 4.5) = \frac{\frac{17}{48}}{\frac{11}{16}}$	M1		their $\frac{\text{(iii)}}{\text{(ii)}}$ iff $0 < p$'s < 1
	$=\frac{17}{33}$	A1	2	cao (allow 0.51)

Q Q	Solution	Marks	Total	Comments
7(c)	Alternative Solution			
	$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{12}(x-1)(7-x) & 1 \le x < 3 \\ \frac{1}{6}(x+1) & 3 \le x < 5 \\ 1 & x \ge 5 \end{cases}$			
(i)	P(X > 2.5) = 1 - F(2.5)			
	$=1 - \frac{1}{12}(2.5 - 1)(7 - 2.5)$ $=1 - \frac{1}{12} \times 1.5 \times 4.5$ $=1 - 0.5625$	(M1)		
	$=0.4375$ or $\frac{7}{16}$	(A1)		
	16	(A1)		cao
(ii)	P(1.5 < X < 4.5) = F(4.5) - F(1.5)			
	$= \frac{1}{6} (4.5 + 1) - \frac{1}{12} (1.5 - 1) (7 - 1.5)$	(M1)		
	$=\frac{11}{12}-\frac{11}{48}$	(A1)		
	$= \frac{11}{16} \mathbf{or} 0.6875$	(A1)		cao
(iii)	P(X > 2.5 and 1.5 < X < 4.5)			
	=P(2.5 < X < 4.5)			
	= F(4.5) - F(2.5)			
	$=\frac{11}{12}-\frac{9}{16}$	(M1)		
	$=\frac{17}{48}$	(A1)		cao
	48	(111)		
(iv)	P(X > 2.5 1.5 < X < 4.5)			
	$= \frac{F(4.5) - F(2.5)}{F(4.5) - F(1.5)} \text{ or } \frac{\text{their (iii)}}{\text{their (ii)}}$	(M1)		
	$=\frac{\frac{17}{48}}{\frac{11}{16}}$			
	$=\frac{17}{33} \mathbf{or} \left(\text{allow } 0.51\right)$	(A1)		cao
	Total		15	
	Total TOTAL		15 75	
	TOTAL		75	