AQA

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MS03 Statistics 3

Mark Scheme
 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS03

Q	Solution	Marks	Total	Comments
1(a)	$\hat{p}=\frac{209}{250}=0.836$	B1		CAO
	$95 \% \mathrm{CI} \Rightarrow z=1.96$	B1		CAO
	CI for p :			
	$\hat{n}+z \widehat{\hat{p}(1-\hat{p})}$	M1		Variance term
	$\hat{p} \pm z \sqrt{\frac{1}{n}}$	M1		Use of: $\hat{p} \pm z \times \sqrt{(\operatorname{Var}(\hat{p}))}$
	ie $\quad 0.836 \pm 1.96 \times \sqrt{\frac{0.836 \times 0.164}{250}}$	A1		\checkmark on \hat{p} and z; not on n
	ie $\quad 0.836 \pm 0.046$			
	or $\quad(0.790,0.882)$	A1	6	AWRT; accept 0.79
(b)	Value of $0.8(80 \%)$ is within CI	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \uparrow \text { dep } \end{aligned}$		\checkmark on CI
	Council's clam is supported (at 5\% level)	B1	2	\checkmark on CI
	Total		8	

MS03 (cont)

Q	Solution	Marks	Total	Comments
2(a)	$r=0.819$ to 0.82	B3		AWFW
	$r=0.81$ to 0.83	(B2)		AWFW
	$r=0.8$ to 0.85	(B1)		AWFW
	$\begin{array}{ll} \text { Attempt at } & \Sigma x \Sigma x^{2} \\ & \Sigma y \Sigma y^{2} \\ & \Sigma x y \end{array}$			$\begin{aligned} & 989,99321 \\ & 1717,296101 \\ & 170956 \end{aligned}$
	or attempt at $\quad S_{x x} S_{y y} S_{x y}$	(M1)		1508.9, 1292.1, 1144.7
	Attempt at a correct formula for r	(m1)		
	$r=0.819$ to 0.82	(A1)	3	AWFW
(b)	$\begin{aligned} & \mathrm{H}_{0}: \rho=0 \\ & \mathrm{H}_{1}: \rho>0 \end{aligned}$	B1		Both
	$\begin{array}{lr} \mathrm{SL} & \alpha=0.01(1 \%) \\ \mathrm{SS} & n=10 \end{array}$			
	CV $\quad r=0.7155$	B1		AWFW 0.715 to 0.716
	Calculated $r>$ Tabulated r	M1		Comparison
	Evidence (at 1% level) of a positive correlation between heart rate and systolic blood pressure	A1 \checkmark	4	\checkmark on r and CV
	Total		7	

MS03 (cont)

Q	Solution	Marks	Total	Comments
3				
(a)(i)	$\mathrm{P}(\mathrm{G} \cap \mathrm{I})=0.5 \times 0.9=0.45$	B1	1	CAO; or equivalent
(ii)	$\mathrm{P}(\mathrm{I})=(\mathrm{i})+\mathrm{P}(\mathrm{E} \cap \mathrm{I})+\mathrm{P}(\mathrm{F} \cap \mathrm{I})$	M1		3 possibilities
	$=0.45+(0.2 \times 0.6)+(0.3 \times 0.75)$	A1		≥ 1 correct new term
	$=0.45+0.12+0.225=0.795$	A1	3	CAO; or equivalent
(iii)	$\mathrm{P}(\mathrm{G} \mid \mathrm{I})=\frac{\mathrm{P}(\mathrm{G} \cap \mathrm{I})}{\mathrm{P}(\mathrm{I})}$	M1		Attempted use of Bayes' Theorem
	$=\frac{(\mathrm{i})}{(\mathrm{ii})}=\frac{0.45}{0.795}=0.566$	m1 A1	3	AWRT; or equivalent
(b)	$\mathrm{P}(\mathrm{E} \mid \mathrm{SD})=\frac{\mathrm{P}(\mathrm{E} \cap \mathrm{SD})}{\mathrm{P}(\mathrm{SD})}$	M1		Correct use of Bayes' Theorem
	$=\frac{0.2 \times 0.25}{(0.2 \times 0.25)+(0.3 \times 0.15)}=$	A1		Numerator (B1 if no Bayes' Theorem)
	$\frac{0.05}{0.05+0.045}$	A1		Denominator (B1 if no Bayes' Theorem)
	$=\frac{0.05}{0.095}=0.526$	A1	4	AWRT; or equivalent
	Total		11	

MS03 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\mathrm{E}(\mathrm{R})=(6 \times 0.1)+(7 \times 0.6)+(8 \times 0.3)$			
	$=0.6+4.2+2.4=7.2$	B1		CAO
	$\mathrm{E}\left(R^{2}\right)=(3.6+29.4+19.2)=52.2$	B1		CAO
	$\operatorname{Var}(R)=\mathrm{E}\left(R^{2}\right)-(\mathrm{E}(R))^{2}$	M1		Use of
	$=52.2-51.84=0.36$	A1	4	CAO
(b)(i)	$\mathrm{E}(T)=7.2+10.9=18.1$	$\mathrm{B} 1 \checkmark$		\checkmark on $\mathrm{E}(R)$
	$\operatorname{Cov}(R, S)=\rho_{R S} \times \sqrt{\operatorname{Var}(R) \times \operatorname{Var}(S)}$	M1		Use of; or equivalent May be scored in (ii)
	$\begin{aligned} & \operatorname{Var}(T)=\operatorname{Var}(R)+\operatorname{Var}(S)+2 \operatorname{Cov}(R, S) \\ & =0.36+1.69+2 \times \frac{2}{3} \sqrt{0.36 \times 1.69} \end{aligned}$	M1		Use of; or equivalent May be scored in (ii)
	$=0.36+1.69+1.04=3.09$	A1	4	CAO
(ii)	$\mathrm{E}(\mathrm{D})=10.9-7.2=3.7$	B1 \checkmark		\checkmark on $\mathrm{E}(R)$
	$\operatorname{Var}(D)=\operatorname{Var}(S)+\operatorname{Var}(R)-2 \operatorname{Cov}(S, R)$			
	$=1.69+0.36-2 \times \frac{2}{3} \sqrt{1.69 \times 0.36}$			
	$=1.69+0.36-1.04=1.01$	B1	2	CAO
	Total		10	

MS03 (cont)

Q	Solution	Marks	Total	Comments
5	Letters/week ~ Po(12.25)			
(a)	Letters/4-week $\sim N(49,49)$	B1		CAO; mean $=$ variance $=49$
	$\mathrm{P}\left(42 \leq X_{\mathrm{P}} \leq 54\right)=\mathrm{P}\left(41.5<X_{\mathrm{N}}<54.5\right)$	M1		Use of ± 0.5
	$=\mathrm{P}\left(\frac{41.5-49}{7}<Z<\frac{54.5-49}{7}\right)$	M1		Standardising (41.5, 42 or 42.5) or (53.5, 54 or 54.5) with C's μ and $\sqrt{\mu}$
	$=\mathrm{P}(-1.07<Z<0.79)$			
	$=\Phi(0.79)-(1-\Phi(1.07))$	m1		Area change
	$=0.78524-1+0.85769$			
	$=0.641$ to 0.644	A1	5	AWFW
(b)(i)	$98 \% \mathrm{CI} \Rightarrow z=2.3263$	B1		AWFW 2.32 to 2.33
	CI for $\lambda / 16$-week: $\hat{\lambda} \pm z \sqrt{\hat{\lambda}}$	M1		Use of expression
	ie $\quad 248 \pm 2.3263 \times \sqrt{248}$			
	$\longdiv { 1 5 . 5 }$	A1 \checkmark		\checkmark on z
	or $\quad 15.5 \pm 2.3263 \times \sqrt{\frac{15.5}{16}}$ ie $\quad 248 \pm 36.6$ or 15.5 ± 2.3	M1		Division by 16 somewhere
	or $\quad(13.2,17.8)$	A1	5	AWRT
(ii)	Value of 12.25 (196) is below CI	$\text { B1 } \checkmark$		\checkmark on CI; must use 12.25 (196)
	Rosa's belief is supported	$\begin{aligned} & \uparrow \text { dep } \\ & \text { B1 } \end{aligned}$		\checkmark on CI
	Total		12	

MS03 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\mathrm{E}(X)=\sum x \times \mathrm{P}(X=x)$	M1		Use of
	$=\sum_{x=0}^{\infty} x \times \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}=\lambda \times \sum_{x=1}^{\infty} \frac{\mathrm{e}^{-\lambda} \lambda^{x-1}}{(x-1)!}$	M1		Factor of λ Cancelling of x (Ignore change in limits)
	$=\lambda \times \sum \mathrm{P}(X=x)=\lambda \times 1=\lambda$	M1		AG; must be clear
	$\mathrm{G}(t)=\mathrm{e}^{\lambda t-\lambda} \quad$ or $\quad \mathrm{M}(t)=\mathrm{e}^{\lambda \mathrm{e}^{t}-\lambda}$	(B1)		Either CAO
	Alternative $\mathrm{E}(X)=\left.\frac{\mathrm{dG}(t)}{\mathrm{d} t}\right\|_{1} \quad \text { or }\left.\quad \frac{\mathrm{dM}(t)}{\mathrm{d} t}\right\|_{0}$	(M1)		Use of either
	$\left[\lambda \mathrm{e}^{\lambda t-\lambda}\right]_{1} \quad \text { or } \quad\left[\lambda \mathrm{e}^{t} \mathrm{e}^{\lambda \mathrm{e}^{t}-\lambda}\right]_{0}=\lambda$	(A1)	3	AG; correct derivation
(b)	$\mathrm{E}(X(X-1))=\sum_{x=0}^{\infty} x(x-1) \times \frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}$	M1		Use of
	$=\lambda^{2} \times \sum_{x=2}^{\infty} \frac{\mathrm{e}^{-\lambda} \lambda^{x-2}}{(x-2)!}$	M1		Factor of λ^{2} Cancelling of $x(x-1)$ (Ignore change in limits)
	$=\lambda^{2} \times \sum \mathrm{P}(X=x)=\lambda^{2} \times 1=\lambda^{2}$	M1		AG; must justify
	$\begin{aligned} \operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\ & =\mathrm{E}(X(X-1))+\mathrm{E}(X)-(\mathrm{E}(X))^{2} \end{aligned}$	M1		
	$=\lambda^{2}+\lambda-\lambda^{2}=\lambda$	A1		AG; must be clear
	Alternative $\begin{aligned} & \operatorname{Var}(X)= \\ & \left.\frac{\mathrm{d}^{2} \mathrm{G}(t)}{\mathrm{d}^{2} t}\right\|_{1}+\lambda-\lambda^{2} \text { or }\left.\frac{\mathrm{d}^{2} \mathrm{M}(t)}{\mathrm{d}^{2} t}\right\|_{0}-\lambda^{2} \end{aligned}$	(M2)		use of either
	$=\left[\lambda^{2} \mathrm{e}^{\lambda t-\lambda}\right]+\lambda-\lambda^{2}=\lambda$	(A2)		AG; correct derivation
	$=\left[\lambda \mathrm{e}^{t} \mathrm{e}^{\lambda \mathrm{e}^{t}-\lambda}+\lambda^{2} \mathrm{e}^{2 t} \mathrm{e}^{\lambda \mathrm{e}^{t}-\lambda}\right]_{0}-\lambda^{2}=\lambda$	(A1)	5	AG; correct derivation
	Total		8	

MS03 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\bar{y}=1193$	B1	1	CAO
(b)	$\mathrm{H}_{0}: \mu_{Y}-\mu_{X}=200$	B1		200 is not necessary
	$\mathrm{H}_{1}: \mu_{Y}-\mu_{X}>200$	B1		200 is necessary
	$\begin{array}{ll} \text { SL } & \alpha=0.01(1 \%) \\ \text { CV } & z=2.3263 \end{array}$	B1		AWFW 2.32 to 2.33
	$z=\frac{(\bar{y}-\bar{x})-200}{\sigma_{y}^{2}}=\frac{(1193-936)-200}{6 \sigma^{2}}$	M1		Numerator, 200 is not necessary
	$\sqrt{\sqrt{\frac{\sigma_{Y}^{2}}{n}+\frac{\sigma_{X}^{2}}{n}}}=\sqrt{\frac{65^{2}}{10}+\frac{45^{2}}{20}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Denominator \checkmark on (a)
	$\sqrt{n_{Y}} \begin{aligned} & n_{X}\end{aligned}$			
	$=2.48$ to 2.5	A1		AWFW
	Evidence (at 1\% level) to support the claim	A1	8	\checkmark on z and CV
(c)(i)	$\begin{aligned} & \mathrm{CV}(\bar{y}-\bar{x}): \\ & 200+z(\text { denominator in }(\mathrm{b})) \end{aligned}$	M1		May be scored in (b)
	ie $\quad 200+2.3263 \times \sqrt{523.75}$			
	(= 253.24)	A1	2	AG; must justify
(ii)	Power $=1-\mathrm{P}$ (Type II error)	M1		Use of
	$=1-\mathrm{P}\left(\right.$ accept $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ false $)$	M1		Use of; or equivalent
	$=1-P\left(Z<\frac{253.24-275}{\sqrt{523.75}}\right)$	M1		Standardising 253.24 using 275 and C's denominator in (b)
	$=1-\Phi(-0.95)=\Phi(0.95)$	m1		Area change
	$=0.83$	A1	5	AWRT
(iii)	Probability of accepting that difference in mean weights is more than $\mathbf{2 0 0}$ grams	B1		Not in context \Rightarrow max of 2
	when, in fact, it is $\mathbf{2 7 5}$ grams	B1		
	is $\mathbf{0 . 8 3}$ (or 83%)	B1ヶ	3	\checkmark on (ii)
	Total		19	
	TOTAL		75	

