General Certificate of Education (A-level) January 2011 **Mathematics** MS/SS1B (Specification 6360) **Statistics 1B** Mark Scheme Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner. It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. Further copies of this Mark Scheme are available from: aga.org.uk Copyright © 2011 AQA and its licensors. All rights reserved. #### Copyright AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre. Set and published by the Assessment and Qualifications Alliance. ### **Key to mark scheme abbreviations** | M | mark is for method | |-------------|--| | m or dM | mark is dependent on one or more M marks and is for method | | A | mark is dependent on M or m marks and is for accuracy | | В | mark is independent of M or m marks and is for method and accuracy | | E | mark is for explanation | | √or ft or F | follow through from previous incorrect result | | CAO | correct answer only | | CSO | correct solution only | | AWFW | anything which falls within | | AWRT | anything which rounds to | | ACF | any correct form | | AG | answer given | | SC | special case | | OE | or equivalent | | A2,1 | 2 or 1 (or 0) accuracy marks | | –x EE | deduct x marks for each error | | NMS | no method shown | | PI | possibly implied | | SCA | substantially correct approach | | c | candidate | | sf | significant figure(s) | | dp | decimal place(s) | ### No Method Shown Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**. Where a question asks the candidate to state or write down a result, no method need be shown for full marks. Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**. Otherwise we require evidence of a correct method for any marks to be awarded. # MS/SS1B | Q | Solution | Marks | Total | Comments | |---------|--|----------------------------|-------|--| | 1(a)(i) | r = 0.6 to 0.98 | B1 | | AWFW (≈ 0.8) If answers are not labelled, assume order is (a)(i) then (a)(ii) | | (ii) | r = -0.5 to $-0.02Accept answers as ranges if and only if contained entirely within given ranges$ | B1 | 2 | AWFW (≈ -0.3)
Eg: (a)(i) 0.7 to 0.9 \Rightarrow B1
(a)(ii) -0.6 to -0.4 \Rightarrow B0 | | (b)(i) | r = 0.757
r = 0.75 to 0.77
r = 0.65 to 0.85
or
Attempt at $\sum x \sum x^2 \sum y \sum y^2$ and $\sum xy$ | B3
(B2)
(B1)
(M1) | 3 | AWRT (0.75708)
AWFW
AWFW
271.5 6142.97 1911.9 304650.01 and
43259.17 (all 5 attempted) | | | Attempt at S_{xx} S_{yy} and S_{xy} Attempt at substitution into correct corresponding formula for r $r = 0.757$ | (m1)
(A1) | | 0.2825 36.5425 and 2.4325 (all 3 attempted) AWRT | | (ii) | Strong/fairly strong/moderate positive (linear) correlation/relationship/ association/link (but not 'trend') between | Bdep1 | | Dependent on $0.65 < r < 0.85$
Or equivalent; must qualify strength and indicate positive
Bdep0 for very strong/high/average/ medium/some etc. | | | Circumference/size and weight of (cricket) balls | B1 | 2 | Context; providing $0 < r < 1$ | | | Total | | 7 | | | | IS/SS1B (cont) | | | | | | |---------|--|----------|-------|---|--|--| | Q | Solution | Marks | Total | Comments | | | | 2(a)(i) | $P(M \cap C) = \frac{175}{645} = \frac{35}{129} = 0.271$ | B1 | 1 | AWRT; accept either correct fraction | | | | (ii) | $P(M) = \frac{519}{645} = \frac{173}{215} = 0.804$ to 0.805 | B1 | 1 | AWFW; accept either correct fraction | | | | (iii) | $P(LD) = \frac{63}{645} = \frac{21}{215} = 0.097$ to 0.098 | B1 | 1 | AWFW; accept either correct fraction | | | | (iv) | $P(L F) = \frac{94}{126} = \frac{47}{63}$ $= 0.746$ | M1 | | Accept $\frac{94}{645} \div \frac{126}{645}$ | | | | | = 0.746 | A1 | 2 | AWRT | | | | (v) | $P(M L') = \frac{519 - 255}{645 - 349} = \frac{175 + 54 + 35}{193 + 63 + 40}$ | M1
M1 | | Allow one arithmetic slip Allow one arithmetic slip | | | | | $=\frac{264}{296} = \frac{132}{148} = \frac{66}{74} = \frac{33}{37}$ | | | Any of these implies M1 M1 | | | | | = 0.891 to 0.893 | A1 | 3 | AWFW | | | | (b) | $P(L \cap L F) = \left(\frac{94}{126} \times \frac{93}{125}\right) \text{ or } \frac{8742}{15750}$ | В1 | | Or $\left(\frac{47}{63} \times \frac{93}{125}\right)$ or $\frac{4371}{7875}$ or $\frac{1457}{2625}$ | | | | | = 0.555 | B1 | 2 | AWRT | | | | (c) | $P(L \cap C \cap (LD + O))$ | | | | | | | | $=\frac{349}{645}\times\frac{193}{644}\times\frac{63+40}{643}$ | M1
M1 | | Correct numerator Correct denominator | | | | | SC The three correct fractions identified but not multiplied \Rightarrow M1 M0 M0 A0 | | | | | | | | × 6 or 3 | M1 | | Note that a denominator of $\binom{645}{3}$
\Rightarrow M2 (second and third M1 marks) | | | | | = 0.155 to 0.157 | A1 | 4 | AWFW | | | | | NB: 0.026 with no working \Rightarrow M1 only 0.026×6=0.156 with no working \Rightarrow 4 marks | | | | | | | | Total | | 14 | | | | | MS/SS1B (cont) | | | | | | | |----------------|--|------------|-------|---|--|--| | Q | Solution | Marks | Total | Comments | | | | 3(a)(i) | $\frac{0.98+1.00}{2}$ or $\frac{0.975+1.005}{2}$ or $0.98+\frac{0.02}{2}$ or $0.975+\frac{0.03}{2} = 0.99$ | B1 | | AG (At least) one correct expression seen Ignore contradictions Accept any valid equivalent | | | | (ii) | $\frac{0.97 + 0.98}{2} = 0.975 \text{and}$ $\frac{1.00 + 1.01}{2} = 1.005$ | B1 | 2 | Both CAO Can not be implied from (a)(i) | | | | | SC In (a)(i) and (a)(ii) allow 1.0049 or 1.0049 etc | | | Similar forms for lower boundary | | | | (b) | Mean, $\bar{x} = 1.062$
Standard deviation, s or $\sigma = 0.043$ | B1
B2 | 3 | CAO $\sum fx = 106.2$ Ignore notation
AWRT $\sum fx^2 = 112.9662$
If B0 B0, M1 can be awarded for attempt
at $\frac{\sum fx}{100}$ | | | | (c)(i) | $99\%(0.99) \Rightarrow z = 2.57 \text{ to } 2.58$ | B1
(B1) | | AWFW (2.5758)
$t_{99} (0.995) = 2.626 \text{ AWRT}$ | | | | | CI for μ is $\overline{x} \pm (z \text{ or } t) \times \frac{(s \text{ or } \sigma)}{\sqrt{n}}$ | M1 | | Used Must have \sqrt{n} with $n > 1$ | | | | | Thus $1.062 \pm 2.5758 \times \frac{0.043}{\sqrt{100 \text{ or } 99}}$ | A1F | | F on \overline{x} , s/σ and z/t | | | | | Hence 1.06 ± 0.01 or $(1.05, 1.07)$ | A1 | 4 | AWRT; award even if previous inaccuracies in \overline{x} , s/σ or z/t Dependent on A1F | | | | (ii) | Volumes/ X / (parent) population may be modelled by a normal distribution / is normally distributed (Ignore contradictions) | B1 | 1 | Or equivalent; not distribution, data, values (in table), sample, <i>n</i> large, nor simply 'It is stated in question' | | | | (iii) | Sample data grouped Exact sample values unknown / midpoints used \overline{x} and s calculated from grouped data | B1 | 1 | σ unknown s calculated from a sample \overline{x} (not μ) and s are estimates NOT data values rounded | | | | (d)(i) | CI for μ or CI in (c)(i) > 1
LCL of CI for μ or
LCL of CI in (c)(i) > 1 | B1 | | Or equivalent; must compare CI to 1
Dependent on CI in (c)(i) > 1 | | | | (ii) | 99 or 100 or all sample/ table/ data volumes/ values/ x-values/ cartons are within this range (or none/0 or 1 volumes outside) | В1 | 2 | | | | | | Total | | 13 | | | | | MS/SS1B (co | Solution | Marks | Total | Comments | |-------------|---|---------------|-------|--| | 4(a) | $R \sim B(15, 0.45)$ | | | | | (i) | $P(R \le 5) = 0.26(0)$ to 0.261 | B1 | 1 | AWFW (0.2608) | | (ii) | $P(R > 10) = 1 - P(R \le 10)$ | | | Requires '1 –' Accept 3dp rounding or truncation | | | =1-(0.9745 or 0.9231) | M1 | | Can be implied by 0.025 to 0.026 but not by 0.0769 to 0.077 | | | = 0.025 to 0.026 | A1 | 2 | AWFW (0.0255) | | (iii) | P(R=6) = 0.4522 - (a)(i) | M1 | | Can be implied by a correct answer | | | $\mathbf{or} = \binom{15}{6} (0.45)^6 (0.55)^9$ | | | | | | = 0.191 to 0.192 | A1 | 2 | AWFW (0.1914) | | (iv) | $P(5 \le R \le 10) = 0.9745 \text{ or } 0.9231 (p_1)$ | M1 | | Accept 3dp rounding or truncation $p_2 - p_1 \Rightarrow M0 M0 A0$ | | | | | | $(1-p_2)-p_1 \Rightarrow M0 M0 A0$ | | | | | | $p_1 - (1 - p_2) \Rightarrow M1 \text{ M0 A0}$ | | | | | | only providing result > 0 | | | Minus 0.1204 or 0.2608 (p_2) | M1 | | Accept 3dp rounding or truncation | | | = 0.853 to 0.855 | A1 | 3 | AWFW (0.8541) | | | Or | | | | | | B (15, 0.45) terms stated for at least 3 values within $4 \le R \le 11$ gives probability | (M1) | | Can be implied by a correct answer | | | = 0.853 to 0.855 | (A2) | | AWFW (0.8541) | | (b)(i) | P(S) = 0.85 plus 1 minus | B1 | | CAO; requires 'plus' or 'minus' | | | (0.15×0.80) (0.15×0.20) | B1 | 2 | CAO; not simply 0.12 or 0.03 | | | = 0.97 | | | AG | | | NB: $(0.85 \times 0.20) + 0.80 \Rightarrow B0 B0$ | | | | | | $(0.85 \times 0.20) + (0.85 \times 0.80)$ | | | | | | $+(0.15\times0.80) \Rightarrow B0 B1$ | | | | | (ii) | $P(S \ge 48) = 0.81 \text{ to } 0.82 \text{ or } 0.5553$ | M2 | | Accept 3dp rounding or truncation | | | or 0.9372 | 1 V1 ∠ | | M2 for the three correctly expressed terms | | | =0.81(0) to 0.811 | A1 | 3 | for B (50, 0.03) or B (50, 0.97) added
AWFW (0.8108) | | | NB: Answer = 0.4447 or 0.1892 or $0.0628 \Rightarrow M1$ only | | | | | (iii) | p = 1 - 0.85 = 0.15 | B1 | | CAO; may be implied by correct answer or correct expression for mean | | | Mean, $\mu = 80 \times 0.15 = 12$ | B1 | 2 | CAO | | | SC Mean = $9.6 \Rightarrow B1$ only | | | | | | Total | | 15 | | | Q Q | Solution | Marks | Total | Comments | |--------|--|----------------------|-------|---| | 5(a) | Time taken is dependent upon leaving time | B1 | 1 | Or equivalent | | (b) | b (gradient) = 1.28 (or 141/110)
b (gradient) = 1.25 to 1.35 | B2
(B1) | | AWRT; (CAO or equivalent) (1.28182)
AWFW
Treat rounding of correct answers as ISW | | | a (intercept) = 29.95 to 30 (or 659/22)
a (intercept) = 29 to 31
Thus $y = 30 + 1.28x$ | B2
(B1)
B1F | 5 | AWFW; (CAO or equivalent) (29.95455)
AWFW
F on a and b | | | or | | | 275 9625 682 and 20575 (47494) | | | Attempt at $\sum x \sum x^2 \sum y$ and $\sum xy \left(\sum y^2\right)$ | | | (All four attempted) | | | or Attempt at S_{xx} and S_{xy} (S_{yy}) | (M1) | | 2750 and 3525 (5210)
(Both attempted) | | | Attempt at correct formula for b gradient b (gradient) = 1.28 (or 141/110) a (intercept) = 29.95 to 30 (or 659/22) | (m1)
(A1)
(A1) | | AWRT; (CAO or equivalent)
AWFW; (CAO or equivalent) | | | Thus $y = 30 + 1.28x$ | (B1F) | | F on a and b | | | Accept a and b interchanged only if identified correctly by a clearly shown equation | | | If a and b are not identified anywhere in the question, then:
1.25 to 1.35 \Rightarrow B1
29 to 30 \Rightarrow B1 | | (c) | $7.45 \text{ am} \Rightarrow x = 15$ | B1 | | CAO; stated, used or implied | | () | $\Rightarrow y_{15} = 30 + 1.28 \times 15$ | M1 | | Use of $10 < x < 20$ | | | = 47 to 52 | A1 | | AWFW (49.2) | | | Time before 9.00 am = $9.00 - (7.45 + c$'s y_{15}) | M1 | | May be implied | | | = 23 to 28 | A 1 | 5 | AWFW (25.8) | | | SC Answer of 17 CAO (use of c's $y_{15} = 58$) gains 2 marks | | | NB: An answer of 8.32 to 8.37 gains B1 M1 A1 M0 A0 | | (d)(i) | $y_{85} = 30 + 1.28 \times 85 = 135 \text{ to } 146$ | B1 | 1 | AWFW (138.9) | | (ii) | Extrapolation/ outside/ above range of <i>x</i> -values | B1 | | Or equivalent | | | Implies leaves home at 8.55 so different traffic conditions | B1 | 2 | Or equivalent; 8.55 may be implied by 5 minutes | | | Total | | 14 | | | , | MS/SS1B (cont) | | | | | | |-------------|---|-------|-------|---|--|--| | Q | Solution | Marks | Total | Comments | | | | 6(a)
(i) | Volume, $V \sim N(412, 8^2)$
$P(V < 400) = P\left(Z < \frac{400 - 412}{8}\right)$ | M1 | | Standardising 400 with 412 and 8 and/or $(412-x)$ | | | | | = P(Z < -1.5) = 1 - P(Z < 1.5) | M1 | | Area change May be implied by a correct answer or an answer < 0.5 | | | | | =1-0.93319=0.066 to 0.067 | A1 | 3 | AWFW (0.06681) | | | | (ii) | P(V > 420) = P(Z > 1) | B1 | | CAO but ignore inequality and sign
May be implied by a correct answer | | | | | = 1 - P(Z < 1) = 1 - 0.84134
= 0.158 to 0.159 | B1 | 2 | AWFW (0.15866) | | | | (iii) | P(V = 410) = 0 or zero or impossible | B1 | 1 | Ignore any working B0 for 'impossible to calculate' or 'no answer' | | | | (b)(i) | A statement/indication that (–) 1.6449 and/or 2.3263 are z-values | B1 | | Simple statement that $z = \pm 1.6449$ and/or $z = \pm 2.3263$ or sketch of normal curve with at least one z-value marked | | | | | Do not allow $\Phi(0.99) = 2.3263$, etc but allow $\Phi^{-1}(0.99) = 2.3263$
Do not award for z-value(s) simply embedded in standardisation statement(s) | | | | | | | | A clear use of $z = \frac{v - \mu}{\sigma}$ or $v = \mu + 2\sigma$
with 400 and/or 420 (condone sign errors) | M1 | | SC Immediate algebraic use of $v - \mu = z\sigma \Rightarrow B1 M1 A0$ | | | | | The two given equations correctly derived | A1 | 3 | AG; watch for sign inconsistencies | | | | (ii) | Thus $20 = (2.3263 + 1.6449)\sigma$ | M1 | | A sensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by eliminating μ or σ Do NOT allow MC or MR | | | | | $\sigma = 5.04$ | A1 | | AWRT (5.03626) | | | | | $\mu = 408$ | A1 | 3 | AWRT (408.284) | | | | | Total | | 12 | | | | | | TOTAL | | 75 | | | | | L | | 1 | - | <u> </u> | | |