General Certificate of Education # Mathematics 6360 Statistics 6380 MS/SS1B/W Statistics 1B ## **Mark Scheme** 2010 examination - January series Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner. It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk Copyright © 2010 AQA and its licensors. All rights reserved. #### COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre. Set and published by the Assessment and Qualifications Alliance. The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX #### Key to mark scheme and abbreviations used in marking | M | mark is for method | | | | | | |------------|--|-----|----------------------------|--|--|--| | m or dM | mark is dependent on one or more M marks and is for method | | | | | | | A | mark is dependent on M or m marks and is for accuracy | | | | | | | В | mark is independent of M or m marks and is for method and accuracy | | | | | | | E | mark is for explanation | | | | | | | | | | | | | | | or ft or F | follow through from previous | | | | | | | | incorrect result | MC | mis-copy | | | | | CAO | correct answer only | MR | mis-read | | | | | CSO | correct solution only | RA | required accuracy | | | | | AWFW | anything which falls within | FW | further work | | | | | AWRT | anything which rounds to | ISW | ignore subsequent work | | | | | ACF | any correct form | FIW | from incorrect work | | | | | AG | answer given | BOD | given benefit of doubt | | | | | SC | special case | WR | work replaced by candidate | | | | | OE | or equivalent | FB | formulae book | | | | | A2,1 | 2 or 1 (or 0) accuracy marks | NOS | not on scheme | | | | | –x EE | deduct x marks for each error | G | graph | | | | | NMS | no method shown | c | candidate | | | | | PI | possibly implied | sf | significant figure(s) | | | | | SCA | substantially correct approach | dp | decimal place(s) | | | | #### No Method Shown Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme. Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**. Where a question asks the candidate to state or write down a result, no method need be shown for full marks. Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**. Otherwise we require evidence of a correct method for any marks to be awarded. #### MS/SS1B | MS/SS1B | | T = = | | | |---------|--|--------|-------|--| | Q | Solution | Marks | Total | Comments | | 1(a)(i) | $X \sim N(10.2, 0.15^2)$ | | | | | | $P(X < 10.5) = P(Z < \frac{10.5 - 10.2}{0.15})$ | M1 | | Standardising (10.45, 10.5 or 10.55) with 10.2 and ($\sqrt{0.15}$, 0.15 or 0.15 ²) and/or (10.2 – x) | | | = P(Z < 2) | A1 | | CAO; ignore inequality and sign
May be implied by a correct answer | | | = 0.977 | A1 | 3 | AWRT (0.97725) | | (ii) | P(10.0 < X < 10.5)
= [C's (a)(i)] - $P(X < 10.0)$ | M1 | | Or equivalent; must be clear correct method if answer incorrect and answer > 0 | | | = (a)(i) - P(Z < -1.33) | | | Method correct using -1.3 | | | = (a)(i) - (1 - p) | | | gives 0.88 to 0.881
⇒ M1 m1 A0 | | | = 0.97725 - (1 - 0.90824) | m1 | | Area change May be implied by a correct answer or answer > 0.5 | | | = 0.885 to 0.887 | A1 | 3 | AWFW (0.88604)
M1 m1 A1 for 0.90824 – [1 – (a)(i)]
= 0.886
M1 m0 A0 for (a)(i) – 0.90824 | | | | | | = 0.0685
M0 mo A0 for answer < 0 | | (b) | P(X > 10) = p[from (a)(ii)]
= 0.908 to 0.909 | B1F | | Correct value or F on value used or implied in (a)(ii) providing > 0.5 Use of -1.3 gives 0.9032 | | | $P(6 \text{ rolls} > 10) = 0.90824^{6}$ | M1 | | Accept any probability to power 6 | | | 0.56 to 0.565 | A1 | 3 | AWFW | | | Note:
B0F M1 A0 is possible | | | | | | | Total | 9 | | | | | 1 otai | , | | | Q | Solution | Marks | Total | Comments | |--------|---|----------|-------|---| | 2(a) | Ordering values gives: | | | May be implied by correct median or correct IQR | | | (a) 14 15 18 20 25 25 26 27 29 32 34 37 37 (b)
Median = 26 | M1
A1 | | Ignore any reference to a and b CAO | | | IQR = 34 - 18 = 16 | A1
A2 | | CAO | | | Special Case: Identification that $LQ = 18$ and $UQ = 34$ | (A1) | 4 | Both CAO | | (b)(i) | Two values (25 and 37) of mode
No unique value
Sparse data
Many different values | B1 | | Or equivalent | | (ii) | a and b (two values) unknownImpossible to calculateCannot be calculated | B1 | 2 | Or equivalent | | (c) | Mean = $\frac{\sum x}{n} = \frac{390}{15} = 26$ | B1 | | CAO | | | If not identified, assume order is \overline{x} then s | | | | | | SD $(\sum x^2 = 11472) = 9.4$ to 9.8 | B1 | 2 | AWFW (9.423 & 9.754) Treat rounding of a correct stated answer to an integer as ISW | | | Special Case: Evidence of $\frac{\sum x}{15}$ | (M1) | | Can only be awarded if no marks scored elsewhere in (c) | | | | Total | 8 | | | Q | Solution | Marks | Total | Comments | |------|---|----------------------|-------|--| | 3(a) | $b ext{ (gradient)} = 7.05$
$b ext{ (gradient)} = 7(.00) ext{ to } 7.1(0)$ | B2
(B1) | | AWRT (7.05134) AWFW Treat rounding of correct stated answers as ISW | | | $a ext{ (intercept)} = 2500 ext{ to } 2502$
$a ext{ (intercept)} = 2490 ext{ to } 2510$ | B2
(B1) | 4 | AWFW (2501.091)
AWFW | | | or Attempt at $\sum x \sum x^2 \sum y & \& \sum xy \left(\sum y^2\right)$ or Attempt at S_{xx} & S_{xy} $\left(S_{yy}\right)$ | (M1) | | 1351 268047 27034 & 5269065 (105653202) (all 4 attempted) 7304 & 51503 (1247894) (both attempted) | | | Attempt at correct formula for <i>b</i> (gradient) $b \text{ (gradient)} = 7.05$ $a \text{ (intercept)} = 2500 \text{ to } 2502$ | (m1)
(A1)
(A1) | | AWRT
AWFW | | | Accept a & b interchanged only if identified correctly by a clearly shown equation (stated answers are not sufficient) in (b) | | | If a and b are not identified anywhere in solution, then:
$7.05 \Rightarrow B1$
$2500 \text{ to } 2502 \Rightarrow B1$ | | (b) | $y_{200} = a + b \times 200$ | M1 | | Used May be implied by correct answer | | | = 3890 to 3930 | A1 | 2 | AWFW (3911.36) | | (c) | Large residuals / residual range
suggest estimate may be unreliable
or | B1
B1dep | 2 | | | | Largest residuals only small in relation to y-values (10%) so estimate may be reliable (unreliable) | B1
B1dep | | (unreliable) requires (10% or equivalent) | | | Special Case: If B0 B0dep then: Involves interpolation Does not involve extrapolation Within observed range | (B1) | | Any one; or equivalent | | | | Total | 8 | | | MS/SS1B (co | Solution | Marks | Total | Comments | |-------------|---|------------|-------|---| | 4(a)(i) | $P(\text{all 3 walk}) = 0.65 \times 0.40 \times 0.25$ | M1 | | Ratios (eg 65:1000) are only penalised by 1 mark at first correct answer Can be implied by correct answer | | 4(a)(1) | • | 1V1 1 | | | | | = 65/1000 = 13/200 = 0.065 | A1 | 2 | CAO; do not confuse with 0.65 | | (ii) | P(Rita by bus) = $0.25 \times (1 - 0.15) \times (1 - 0.20)$ | M1 | | Can be implied by correct answer | | | = 17/100 = 0.17 | A 1 | 2 | CAO | | (iii) | P(2 cycle) = 0.10 × 0.45 × (0.25 + 0.20)
= 0.02025
+ 0.10 × (0.40 + 0.15) × 0.55
= 0.03025
+ (0.65 + 0.25) × 0.45 × 0.55 | | | | | | = 0.22275
(0.27325) | B1 | | CAO at least 1 of these 3 terms or equivalent but allow a '×3' | | | $P(3 \text{ cycle}) = 0.10 \times 0.45 \times 0.55$
= 0.02475 | B1 | | CAO | | | $P(\geq 2 \text{ cycle}) = P(2 \text{ cycle}) + P(3 \text{ cycle})$ | M1 | | Sum of 4 or 7 terms each a product of 3 probabilities but not '×3' | | | = 0.298 | A1 | 4 | CAO | | | or
$P(0 \text{ cycle}) = 0.90 \times 0.55 \times 0.45 = 0.22275$ | (B1) | | CAO | | | P(1 cycles)
= $0.10 \times 0.55 \times 0.45 = 0.02475$
+ $0.90 \times 0.45 \times 0.45 = 0.18225$
(0.47925)
+ $0.90 \times 0.55 \times 0.55 = 0.27225$
P(≥ 2 cycle)
= $1 - [P(0 \text{ cycle}) + P(1 \text{ cycles})]$ | (B1) | | CAO at least 1 of these 3 terms but allow a '×3' 1 – [sum of 4 terms each a product of 3 probabilities but not '×3'] | | | 1 - 0.702 = 0.298 | (A1) | | CAO | | (b)(i) | $P(WW) = (0.65 \times 0.90) = 0.585$ | B1 | | CAO either | | | $P(CC) = (0.10 \times 0.70) = 0.070$ | | | | | | P(WW or CC) = 0.585 + 0.070 | M1 | 2 | Sum of 2 terms each a product of 2 probabilities | | | = 0.655 | A1 | 3 | CAO; or equivalent | | (ii) | P(different) = 1 - (b)(i) = 0.345 | B1F | 1 | F on (b)(i) providing 0 | | | | Total | 12 | | | M12/2 | IS/SS1B (cont) | | | | | | | |-------|----------------|--|-------|-------|---|--|--| | - | Q | Solution | Marks | Total | Comments | | | | | 5(a)(i) | $Mean = \frac{12120}{12} = 1010$ | B1 | | CAO | | | | | | $98\% (0.98) \implies z = 2.32 \text{ to } 2.33$ | B1 | | AWFW (2.3263) | | | | | | CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$ | M1 | | Used Must have \sqrt{n} with $n > 1$ | | | | | | Thus $1010 \pm 2.3263 \times \frac{10.5}{\sqrt{12}}$ | A1F | | F on \overline{x} and z only | | | | | | Hence $1010 \pm (7(.0) \text{ to } 7.1)$
or $(1003, 1017)$ | A1dep | 5 | CAO & AWFW (accept 7) Dependent on A1F AWRT | | | | | | Notes:
Use of $t_{11}(0.99) = 2.718 \implies$
maximum of B1 B0 M1 A0F A0
Use of a 'corrected' 10.5 \implies
maximum of B1 B1 M1 A0F A0 | | | | | | | | (ii) | Weight of flour in a bag (may be assumed to be) is normally distributed | B1 | 1 | Or equivalent; must refer to weight | | | | | (iii) | Any number such that $20 \le \text{number} \le 50$ | B1 | 1 | Must be a single integer value Ignore any reasoning | | | | | (b) | 1 kg or 1000 grams is outside / below CI or From CI, (population) mean weight is greater than 1kg or 1000 grams | B1F | | Or equivalent F on (a)(i) Any reference to 1010 ⇒ B0F | | | | | | 3 or 3/12 or 25% of bags in sample weigh less than 1kg or 1000 grams | В1 | | Or equivalent; but not 'some' | | | | | | Statement appears dubious/incorrect/invalid | B1dep | 3 | Dependent on both B1F and B1 | | | | | (c) | 2/100 or 1/50 or 0.02 or 2% | B1 | 1 | CAO; not 0.02% | | | | | | | Total | 11 | | | | | AS/SS1B
Q | Solution | Marks | Total | Comments | |--------------|---|----------|-------|--| | 6(a)(i) | $R \sim B(14, 0.35)$
$P(R \le 7) = 0.924$ to 0.925 | M1
A1 | 2 | Used somewhere in (a); may be implied AWFW (0.92466) | | (ii) | $P(R \ge 11) = 1 - P(R \le 10)$
= 1 - (0.9989 or 0.9999) | M1 | | Requires '1 −'and ≥ 4 dp accuracy | | | = 0.0011 | A1 | 2 | AWRT (0.001106) | | (iii) | $P(5 < R < 10) = 0.9940 \text{ or } 0.9989 (p_1)$ | M1 | | Accept 3 dp accuracy $p_2 - p_1 \implies M0 \text{ M0 A0}$ $(1 - p_2) - p_1 \implies M0 \text{ M0 A0}$ $p_1 - (1 - p_2) \implies M1 \text{ M0 A0}$ only providing result > 0 | | | minus 0.6405 or 0.4227 (p_2) | M1 | | Accept 3 dp accuracy | | | = 0.353 to 0.354 | A1 | 3 | AWFW (0.35346) | | | B(14, 0.35) expressions stated for at least 3 terms within $4 \le R \le 11$ gives | (M1) | | Can be implied by correct answer | | | probability $= 0.353$ to 0.354 | (A2) | | AWFW (0.35346) | | (b) | $R \sim B(21, 0.35)$ | M1 | | Implied from correct stated formula; do not accept misreads | | | $P(R = 4) = {21 \choose 4} (0.35)^4 (0.65)^{17}$ | A1 | | Can be implied by a correct answer Ignore any additional terms | | | = 0.059 to 0.0595 | A1 | 3 | AWFW (0.059274) | | (c)(i) | $S \sim B(7, 5/7)$
Mean = $np = 7 \times 5/7 = 5$
If not identified, assume order is μ then σ^2 | B1 | | CAO | | | Variance = $np(1-p)$
= $7 \times 5/7 \times 2/7 = 10/7$ or 1.42 to 1.43 | В1 | 2 | Must clearly state variance value if standard deviation (also) stated CAO / AWFW | | (ii) | Means are the same and (both comparisons clearly stated) Variances/standard deviations are similar Do not accept statements involving correct/incorrect/exact/etc | B1dep | | Must have scored B1 B1 in (i) or B1 B0 plus $10/7 \text{ v } 1.5 \text{ or } \sqrt{10/7} \text{ v } \sqrt{1.5} \text{ stated}$ | | | Barry's claim appears/is sound/valid/correct/likely | B1dep | 2 | Must have scored previous B1dep | | | | Total | 14 | | | Q | Solution | Marks | Total | Comments | |--------|--|--------------------|-------|---| | 7(a) | r = -0.0355 to -0.035 | В3 | 3 | AWFW (-0.03546) | | | r = -0.036 to $-0.034r = -0.04$ to $+0.04$ | (B2)
(B1) | | AWFW
AWFW | | | Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$ | | | 636 42702 738 68294 &38605 (all 5 attempted) | | | Attempt at S_{xx} S_{yy} & S_{xy} | (M1) | | 8994 22907 & -509 (all 3 attempted) | | | Attempt at substitution into correct corresponding formula for <i>r</i> | (m1) | | | | | r = -0.0355 to -0.035 | (A1) | | AWFW | | (b) | Almost/virtually/practically no / zero (linear) correlation / relationship / association / link (but not 'no trend') | B1dep | | Dependent on $-0.1 < r < 0.1$
Or equivalent; must qualify strength as 'zero'; B0dep for very weak/weak/etc unless then qualified correctly | | | purchase and auction prices of antiques | B1 | 2 | Context; providing $-1 < r < 1$ | | (c)(i) | Figure 1: 6 correct labelled points 5 or 4 correct labelled points 3 correct labelled points | B3
(B2)
(B1) | 3 | Deduct 1 mark if > 1 point not labelled or labelled incorrectly | | (ii) | (Two) outlier/anomaly/unusual or identification of J and L | B1 | | Or equivalent | | | (Otherwise) a positive/linear correlation | B1 | 2 | Or equivalent; ignore any qualification of 'strength' | | (d)(i) | $r = \frac{4268.8}{\sqrt{4854.4 \times 4216.1}}$ | M1 | | Used Award B2 for a correct answer without/with different method | | | r = 0.943 to 0.944 | A1 | 2 | AWFW (0.94359) | | (ii) | Very strong/strong positive (linear) correlation/relationship/association/link | B1dep | 1 | Dependent on $0.9 < r < 1$
Or equivalent; must qualify strength and indicate positive; B0dep for high/etc | | | Previous calculation of r was not appropriate (due to outliers) | (B1) | | 1 , | | | | Total | 13 | | | | | TOTAL | 75 | |