General Certificate of Education June 2008 Advanced Level Examination

MPC3

MATHEMATICS Unit Pure Core 3

Pure Core 3

Friday 23 May 2008 9.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

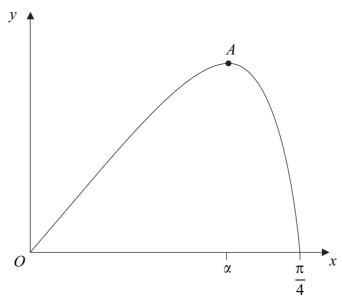
• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P5757/Jun08/MPC3 6/6/6/ MPC3

Answer all questions.

1 Find $\frac{dy}{dx}$ when:

(a)
$$y = (3x+1)^5$$
; (2 marks)


(b)
$$y = \ln(3x + 1)$$
; (2 marks)

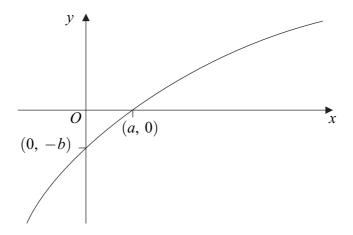
(c)
$$y = (3x+1)^5 \ln(3x+1)$$
. (3 marks)

- 2 (a) Solve the equation $\sec x = 3$, giving the values of x in radians to two decimal places in the interval $0 \le x < 2\pi$.
 - (b) Show that the equation $\tan^2 x = 2 \sec x + 2$ can be written as $\sec^2 x 2 \sec x 3 = 0$.

 (2 marks)
 - (c) Solve the equation $\tan^2 x = 2 \sec x + 2$, giving the values of x in radians to two decimal places in the interval $0 \le x < 2\pi$. (4 marks)

3 A curve is defined for $0 \le x \le \frac{\pi}{4}$ by the equation $y = x \cos 2x$, and is sketched below.

- (a) Find $\frac{dy}{dx}$. (2 marks)
- (b) The point A, where $x = \alpha$, on the curve is a stationary point.
 - (i) Show that $1 2\alpha \tan 2\alpha = 0$. (2 marks)
 - (ii) Show that $0.4 < \alpha < 0.5$. (2 marks)
 - (iii) Show that the equation $1 2x \tan 2x = 0$ can be rearranged to become $x = \frac{1}{2} \tan^{-1} \left(\frac{1}{2x} \right)$. (1 mark)
 - (iv) Use the iteration $x_{n+1} = \frac{1}{2} \tan^{-1} \left(\frac{1}{2x_n} \right)$ with $x_1 = 0.4$ to find x_3 , giving your answer to two significant figures. (2 marks)
- (c) Use integration by parts to find $\int_0^{0.5} x \cos 2x \, dx$, giving your answer to three significant figures. (5 marks)

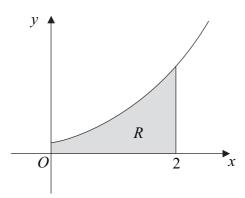

4 The functions f and g are defined with their respective domains by

$$f(x) = x^2$$
, for all real values of x

$$g(x) = \frac{1}{2x - 3}$$
, for real values of x , $x \neq \frac{3}{2}$

- (a) State the range of f. (1 mark)
- (b) (i) The inverse of g is g^{-1} . Find $g^{-1}(x)$. (3 marks)
 - (ii) State the range of g^{-1} . (1 mark)
- (c) Solve the equation fg(x) = 9. (3 marks)

5 (a) The diagram shows part of the curve with equation y = f(x). The curve crosses the x-axis at the point (a, 0) and the y-axis at the point (0, -b).


On separate diagrams, sketch the curves with the following equations. On each diagram, indicate, in terms of a or b, the coordinates of the points where the curve crosses the coordinate axes.

(i)
$$y = |f(x)|$$
. (2 marks)

(ii)
$$y = 2f(x)$$
. (2 marks)

- (b) (i) Describe a sequence of geometrical transformations that maps the graph of $y = \ln x$ onto the graph of $y = 4 \ln(x+1) 2$. (6 marks)
 - (ii) Find the exact values of the coordinates of the points where the graph of $y = 4 \ln(x+1) 2$ crosses the coordinate axes. (4 marks)

6 The diagram shows the curve with equation $y = (e^{3x} + 1)^{\frac{1}{2}}$ for $x \ge 0$.

- (a) Find the gradient of the curve $y = (e^{3x} + 1)^{\frac{1}{2}}$ at the point where $x = \ln 2$. (5 marks)
- (b) Use the mid-ordinate rule with four strips to find an estimate for $\int_0^2 (e^{3x} + 1)^{\frac{1}{2}} dx$, giving your answer to three significant figures. (4 marks)
- (c) The shaded region R is bounded by the curve, the lines x = 0, x = 2 and the x-axis. Find the exact value of the volume of the solid generated when the region R is rotated through 360° about the x-axis. (4 marks)
- 7 (a) Given that $y = \frac{\sin \theta}{\cos \theta}$, use the quotient rule to show that $\frac{dy}{d\theta} = \sec^2 \theta$. (3 marks)
 - (b) Given that $x = \sin \theta$, show that $\frac{x}{\sqrt{1 x^2}} = \tan \theta$. (2 marks)
 - (c) Use the substitution $x = \sin \theta$ to find $\int \frac{1}{(1-x^2)^{\frac{3}{2}}} dx$, giving your answer in terms of x.

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page