Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2011

Mathematics

MPC2

Unit Pure Core 2

Wednesday 18 May 2011 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.

For Exam	iner's Use
Examine	r's Initials
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Answer all questions in the spaces provided.

The triangle ABC, shown in the diagram, is such that AC = 9 cm, BC = 10 cm, angle $ABC = 54^{\circ}$ and the acute angle $BAC = \theta$.

(a) Show that $\theta = 64^{\circ}$, correct to the nearest degree.

(3 marks)

(b) Calculate the area of triangle ABC, giving your answer to the nearest square centimetre. (3 marks)

QUESTION PART REFERENCE	
PART	
REFERENCE	

QUESTION PART REFERENCE	
•••••	
••••••	
••••••	
•••••	
••••••	
•••••	

2 The diagram shows a sector *OAB* of a circle with centre *O*.

The radius of the circle is 6 cm and the angle AOB = 0.5 radians.

(a) Find the area of the sector OAB.

(2 marks)

(b) (i) Find the length of the arc AB.

(2 marks)

(ii) Hence show that

the perimeter of the sector $OAB = k \times$ the length of the arc AB where k is an integer.

(2 marks)

OUESTION	
QUESTION PART REFERENCE	
PART	
REFERENCE	
1	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
	L
· · · · · · · · · · · · · · · · · · ·	

QUESTION PART REFERENCE	
PART	
REFERENCE	
	I
	I
	l l
	I
	I
	I
	I
• • • • • • • • • • • • • • • • • • • •	
	l l
	l l

3 (a) The expression $(2+x^2)^3$ can be written in the f
--

$$8 + px^2 + qx^4 + x^6$$

Show that p = 12 and find the value of the integer q.

(3 marks)

(b) (i) Hence find
$$\int \frac{(2+x^2)^3}{x^4} \, dx$$
.

(5 marks)

(ii) Hence find the exact value of \int_{1}^{2}	$\frac{(2+x^2)^3}{x^4}$	$\mathrm{d}x$.
---	-------------------------	-----------------

(2 marks)

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

- Sketch the curve with equation $y = 4^x$, indicating the coordinates of any point where the curve intersects the coordinate axes. (2 marks)
 - (b) Describe the geometrical transformation that maps the graph of $y = 4^x$ onto the graph of $y = 4^x 5$. (2 marks)
 - (c) (i) Use the substitution $Y = 2^x$ to show that the equation $4^x 2^{x+2} 5 = 0$ can be written as $Y^2 4Y 5 = 0$. (2 marks)
 - (ii) Hence show that the equation $4^x 2^{x+2} 5 = 0$ has only one real solution. Use logarithms to find this solution, giving your answer to three decimal places.

 (4 marks)

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	
••••••	
••••••	
•••••	
•••••	
••••••	
••••••	
••••••	
•••••	
•••••	

5 The diagram shows part of a curve with a maximum point M.

The curve is defined for $x \ge 0$ by the equation

$$y = 6x - 2x^{\frac{3}{2}}$$

(a) Find $\frac{dy}{dx}$. (3 marks)

- (b) (i) Hence find the coordinates of the maximum point M. (3 marks)
 - (ii) Write down the equation of the normal to the curve at M. (1 mark)
- (c) The point $P(\frac{9}{4}, \frac{27}{4})$ lies on the curve.
 - (i) Find an equation of the normal to the curve at the point P, giving your answer in the form ax + by = c, where a, b and c are positive integers. (4 marks)
 - (ii) The normals to the curve at the points M and P intersect at the point R. Find the coordinates of R. (2 marks)

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

A curve C, defined for $0 \le x \le 2\pi$ by the equation $y = \sin x$, where x is in radians, is sketched below. The region bounded by the curve C, the x-axis from 0 to 2 and the line x = 2 is shaded.

(a) The area of the shaded region is given by $\int_0^2 \sin x \, dx$, where x is in radians.

Use the trapezium rule with five ordinates (four strips) to find an approximate value for the area of the shaded region, giving your answer to three significant figures.

(4 marks)

- (b) Describe the geometrical transformation that maps the graph of $y = \sin x$ onto the graph of $y = 2 \sin x$. (2 marks)
- (c) Use a trigonometrical identity to solve the equation

$$2\sin x = \cos x$$

in the interval $0 \le x \le 2\pi$, giving your solutions in radians to three significant figures. (4 marks)

QUESTION PART	
REFERENCE	
• • • • • • • • • • •	

QUESTION PART REFERENCE	
REFERENCE	
•••••	
•••••	
••••••	
•••••	
•••••	
•••••	
•••••	

7	The n th term of a sequence is u_n . The sequence is defined by
	$u_{n+1} = pu_n + q$

where p and q are constants.

The first two terms of the sequence are given by $u_1 = 60$ and $u_2 = 48$.

The limit of u_n as n tends to infinity is 12.

- (a) Show that $p = \frac{3}{4}$ and find the value of q. (5 marks)
- (b) Find the value of u_3 . (1 mark)

QUESTION PART REFERENCE	
••••••	
••••••	
••••••	

QUESTION PART REFERENCE	
••••••	
••••••	
••••••	
•••••	
•••••	
•••••	

8	Prove that, for all values of x , the value of the expression	
	$(3\sin x + \cos x)^2 + (\sin x - 3\cos x)^2$	
	is an integer and state its value.	(4 marks)
QUESTION PART REFERENCE		

QUESTION PART REFERENCE	

9		The first term of a geometric series is 12 and the common ratio of the series	les is $\frac{3}{8}$.
(а	1)	Find the sum to infinity of the series.	(2 marks)
(b)	Show that the sixth term of the series can be written in the form $\frac{3^6}{2^{13}}$.	(3 marks)
(c	:)	The n th term of the series is u_n .	
	(i)	Write down an expression for u_n in terms of n .	(1 mark)
	(ii)	Hence show that	
		$\log_a u_n = n \log_a 3 - (3n - 5) \log_a 2$	(4 marks)
QUESTION PART REFERENCE			
• • • • • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • • •			
••••••			
• • • • • • • • • • • • • • • • • • • •			
••••••			
••••••			••••••
•••••			•••••
•••••			
•••••			
••••••	•••••		••••••
••••••	••••••		•••••
••••••	••••••		•••••
•••••			•••••
••••••	••••••		•••••
••••••			
••••••	••••••		•••••

QUESTION PART REFERENCE	
REFERENCE	
•••••	
•••••	
••••••	
•••••	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE	
	END OF QUESTIONS
Copyright © 2011 AQA and its licensors. All rights reserved.	
Copyrig	וונ 🗵 בי דו חיבה מווע וום וויסווסטוס. הוו ווקוווס וסספו ויסע.

