Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination January 2011

Mathematics

MPC2

Unit Pure Core 2

Monday 10 January 2011 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.

For Exam	iner's Use
Examine	r's Initials
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Answer all questions in the spaces provided.

1 The diagram shows a sector *OAB* of a circle with centre *O* and radius 5 cm.

The angle between the radii OA and OB is θ radians.

The length of the arc AB is 4 cm.

(a) Find the value of θ .

(2 marks)

(b) Find the area of the sector OAB.

(2 marks)

QUESTION	
QUESTION PART REFERENCE	
REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

2	(2)	Write	down	tha	17011100	of i	n a	and u	airon	that.
2	(a)	write	uown	ıne	values	01 /	p, q	ana <i>r</i>	given	ınaı:

(i) $8 = 2^p$;

(ii)
$$\frac{1}{8} = 2^q$$
;

(iii)
$$\sqrt{2} = 2^r$$
. (1 mark)

(b) Find the value of x for which
$$\sqrt{2} \times 2^x = \frac{1}{8}$$
. (2 marks)

QUESTION PART REFERENCE	
•••••	
•••••	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

The triangle ABC, shown in the diagram, is such that AB = 5 cm, AC = 8 cm, BC = 10 cm and angle $BAC = \theta$.

(a) Show that $\theta = 97.9^{\circ}$, correct to the nearest 0.1° .

(3 marks)

- (b) (i) Calculate the area of triangle ABC, giving your answer, in cm^2 , to three significant figures. (2 marks)
 - (ii) The line through A, perpendicular to BC, meets BC at the point D. Calculate the length of AD, giving your answer, in cm, to three significant figures. (3 marks)

QUESTION PART REFERENCE	
PART REFERENCE	
NEI ENENOE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

- 4 (a) Use the trapezium rule with four ordinates (three strips) to find an approximate value for $\int_0^{1.5} \sqrt{27x^3 + 4} \, dx$, giving your answer to three significant figures. (4 marks)
 - (b) The curve with equation $y = \sqrt{27x^3 + 4}$ is stretched parallel to the x-axis with scale factor 3 to give the curve with equation y = g(x). Write down an expression for g(x).

QUESTION	
QUESTION PART REFERENCE	
KEFEKENCE	
•••••	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
••••••	
••••••	
••••••	
••••••	
•••••	
••••••	
••••••	
•••••	
•••••	

- Using the binomial expansion, or otherwise, express $(1-x)^3$ in ascending powers of x. (2 marks)
 - **(b)** Show that the expansion of

$$(1+y)^4 - (1-y)^3$$

is

$$7y + py^2 + qy^3 + y^4$$

where p and q are constants to be found.

(4 marks)

(c) Hence find $\int \left[\left(1 + \sqrt{x} \right)^4 - \left(1 - \sqrt{x} \right)^3 \right] dx$, expressing each coefficient in its simplest form. (4 marks)

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	
•••••	
••••••	
•••••	
•••••	
••••••	
••••••	
••••••	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
••••••	
••••••	
••••••	
••••••	
•••••	
••••••	
••••••	
•••••	
•••••	

6		A geometric series has third term 36 and sixth term 972.		
(a) (i)	Show that the common ratio of the series is 3.	(2 m	arks)
	(ii)	Find the first term of the series.	(2 m	arks)
(b		The n th term of the series is u_n .		
	(i)	Show that $\sum_{n=1}^{20} u_n = 2(3^{20} - 1)$.	(2 m	arks)
	(ii)	Find the least value of <i>n</i> such that $u_n > 4 \times 10^{15}$.	(3 m	arks)
QUESTION PART REFERENCE				
	•••••			•••••
	•••••		••••••	
	•••••		•••••	•••••
	•••••		•••••	•••••
	•••••		•••••	•••••
	•••••		•••••	•••••
	•••••			•••••
	•••••			•••••
••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
	•••••		••••••	•••••
	•••••		••••••	•••••
••••••	•••••		••••••	•••••
•••••	•••••		••••••	•••••
•••••	•••••		••••••	•••••
	•••••		••••••	•••••
	•••••		••••••	•••••
	•••••		••••••	•••••

QUESTION PART REFERENCE	
••••••	
••••••	
•••••	
•••••	
•••••	

A curve C is defined for x > 0 by the equation $y = x + 3 + \frac{8}{x^4}$ and is sketched below.

- (a) Given that $y = x + 3 + \frac{8}{x^4}$, find $\frac{dy}{dx}$. (3 marks)
- **(b)** Find an equation of the tangent at the point on the curve C where x = 1. (3 marks)
- (c) The curve C has a minimum point M. Find the coordinates of M. (4 marks)
- (d) (i) Find $\int \left(x+3+\frac{8}{x^4}\right) dx$. (3 marks)
 - (ii) Hence find the area of the region bounded by the curve C, the x-axis and the lines x = 1 and x = 2. (2 marks)
- (e) The curve C is translated by $\begin{bmatrix} 0 \\ k \end{bmatrix}$ to give the curve y = f(x). Given that the x-axis is a tangent to the curve y = f(x), state the value of the constant k. (1 mark)

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

8 (a	Given that $2 \log_k x - \log_k 5 = 1$, express k in terms of x . Give your answer in a form not involving logarithms. (4 marks)
(b	Given that $\log_a y = \frac{3}{2}$ and that $\log_4 a = b + 2$, show that $y = 2^p$, where p is an expression in terms of b .
QUESTION PART REFERENCE	

QUESTION PART REFERENCE	

- Solve the equation $\tan x = -3$ in the interval $0^{\circ} \le x \le 360^{\circ}$, giving your answers to the nearest degree. (3 marks)
 - (b) (i) Given that

$$7\sin^2\theta + \sin\theta\cos\theta = 6$$

show that

$$\tan^2 \theta + \tan \theta - 6 = 0 (3 marks)$$

(ii) Hence solve the equation $7\sin^2\theta + \sin\theta\cos\theta = 6$ in the interval $0^{\circ} \le \theta \le 360^{\circ}$, giving your answers to the nearest degree. (4 marks)

QUESTION PART REFERENCE	
PART	
REFERENCE	
	

QUESTION PART REFERENCE	
•	
•••••	
••••••	
••••••	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE		
•••••		
•••••		
•••••		
•••••		
	END OF QUESTIONS	
Copyright © 2011 AQA and its licensors. All rights reserved.		

