

General Certificate of Education June 2010

Mathematics

MM2B

Mechanics 2B

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
Е	mark is for explanation			
\checkmark or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
–x EE	deduct x marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM2B

Q	Solution	Marks	Total	Comments
1	$v = \frac{\mathrm{d}s}{\mathrm{d}t}$			M1 for either $\frac{ds}{dt}$ or 1 of 2 terms correct
	$\mathrm{d}t$	M1		a.
	$= 10t - 12\sin 4t$	A1A1	2	(ignore signs)
	- 10 <i>i</i> - 12 Siii 4 <i>i</i> Total	AIAI	3 3	
2(a)		3.64		
	Kinetic energy = $\frac{1}{2} \times 3 \times 4^2$	M1		
	= 24 (J)	A1	2	
(b)	PE lost is	3.61		
	$= 3 \times g \times 51$ $= 153 \text{ or } 1400.4$	M1		
	= 153g or 1499.4 = 1500 J	A1	2	Accept 1499, 153g
	10000	711		1100pt 1133, 1338
(c)(i)	KE is 24 + 153 <i>g</i>	M1		M1 '(a)' + '(b)'
	= 1523.4			
	= 1520 J	A1		(if done (c)(i) in (b) 0 marks; if done (b)
(ii)	. 1 2			and then (c)(i) in (b) M1 only)
(11)	Using KE = $\frac{1}{2}mv^2$			
	$v^2 = 1015.6$	M1		
	Speed of stone is 31.9 ms ⁻¹	A1	4	Accept 31.8 from 1520
				IG
				If use constant acceleration formulae in 2D, possible 4 marks in (c) BUT no
				marks if initial speed is treated as being
				vertical
			_	
(d)	eg Stone is a particle	E1	1	Nist no nosistano de la constanta de la consta
	No air resistance			Not no resistance; accept no wind resistance
	Total		9	resistance
3(a)	Symmetry	E1	1	Only accept 'symmetry'
(b)	Moments about <i>B</i> :	3.61.4.1		
	$0.4 \times 4 + 0.1 \times 8 = 0.5 \times \overline{x}$	M1A1		M1 3 terms, 2 correct
	$\overline{x} = \frac{2.4}{0.5}$			
	0.5 - 4.8 am	A 1	2	
	= 4.8 cm	A1	3 4	
	10tai		4	

MM2B (cont)

MM2B (con				
Q	Solution	Marks	Total	Comments
4(a)	Using $\mathbf{F} = m\mathbf{a}$,			
	$400\cos\frac{\pi}{2} \ t \mathbf{i} + 600t^2 \mathbf{j} = 200 \mathbf{a}$	M1		
	$\mathbf{a} = 2\cos\frac{\pi}{2} t \mathbf{i} + 3t^2 \mathbf{j}$	A1	2	
(b)	$\mathbf{v} = \int a dt$	M1		M1 for either $\int a dt$ or 1 of 2 terms correct
	$=\frac{4}{\pi}\sin\frac{\pi}{2}\ t\mathbf{i}+t^3\mathbf{j}+\mathbf{c}$	A1m1		$m1 \text{ for } + \mathbf{c}$
	When $t = 4$, $\mathbf{r} = -3\mathbf{i} + 56\mathbf{j}$, $64\mathbf{j} + \mathbf{c} = -3\mathbf{i} + 56\mathbf{j}$	m1		
	$\mathbf{c} = -3\mathbf{i} - 8\mathbf{j}$ $\mathbf{v} = (\frac{4}{\pi}\sin\frac{\pi}{2}t - 3)\mathbf{i} + (t^3 - 8)\mathbf{j}$	A1	5	Do not accept $\frac{2}{\frac{\pi}{2}}$ Accept 1.27 for $\frac{4}{\pi}$
(c)	When particle is moving due west, northerly component is zero $t^3 - 8 = 0$ $t = 2$	M1 A1√ A1	3	
(d)	When $t = 2$, $\mathbf{v} = -3\mathbf{i} + 0\mathbf{j}$ Speed of particle is 3 m s ⁻¹	B1√ B1	2	B1 for change –3 to +3
	Total		12	
5	$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{\lambda}{v^{\frac{1}{4}}}$	M1		
	$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{\lambda}{v^{\frac{1}{4}}}$ $\int v^{\frac{1}{4}} \mathrm{d}v = -\int \lambda \mathrm{d}t$	m1		Condone one of $v^{-\frac{1}{4}}$, $+\int \lambda dt$, $\frac{1}{\lambda}$
	$\frac{4}{5}v^{\frac{5}{4}} = -\lambda t + c$ $t = 0, v = u : c = \frac{4}{5}u^{\frac{5}{4}}$	A1A1 m1		$m1 ext{ for } + c$
	$t = 0, v = u : c = \frac{4}{5}u^{\frac{5}{4}}$	A1		
	$v = \left(u^{\frac{5}{4}} - \frac{5}{4}\lambda t\right)^{\frac{4}{5}}$ $v = \left(u^{\frac{5}{4}} - \frac{5}{4}\lambda t\right)^{\frac{4}{5}}$			
	$v = \left(u^{\frac{5}{4}} - \frac{5}{4}\lambda t\right)^{\frac{4}{5}}$	A 1	7	
	Total		7	

MM2B (cont)

MM2B (con	Solution	Marks	Total	Comments
_	Using power = force × velocity	IVIALKS	10131	Comments
6(a)	0 1	M1		
	$Power = (30 \times 48) \times 48$ $= 69120 \text{ watts}$	M1 A1	2	AG
	- 09120 watts	Al	2	AU
(b)	When speed is 40 m s ⁻¹ ,			
(6)				
	max force exerted is $\frac{69120}{40}$			
	= 1728 N	B1		
	Accelerating force is '1728' – 1200 N	M1		
	Using $F = ma$:			
	528 = 1200a	m1		
	$a = 0.44 \text{ m s}^{-2}$	A1	4	
(-)	Force exerted by engine is 69120	D.1		
(c)	ν	B1		
	Force exerted by the engine	M1		(Use of cos3 delete A1,A1 of 3 A terms)
	$=30v-mg\sin 3$	1V1 1		
	$30v - 615.47$ (or $1200g\sin 3$) = $\frac{69120}{v}$	A1A1		A2 All terms correct
	V			A1 Two terms correct
	$30v^2 - 615.47v - 69120 = 0$	A1		SC3 for $30v^2 + 615.47v - 69120 = 0$
	$615.47 \pm \sqrt{615.47^2 + 4 \times 30 \times 69120}$	M1		
	$v = {2 \times 30}$	IVI I		
	Speed is 59.3 m s ⁻¹	A1	7	
	Total		13	
7(a)	R F			
	\			
		B2	2	B1 for S and 6g (in correct place)
	S			B1 for R and F or combined vertical force
				at C
	V 6g			
	A			
(b)	Moments about <i>C</i> :			
	$3 \times S \times \cos 20 = 6g \times 1 \times \cos 20$	M1A1		M1 2 terms, 1 term correct
	S = 19.6 N or 2g	A1	3	,
				R, F not correct 0 marks in (c)(i) and
				(c)(ii)
(c)(i)	Moments about <i>A</i> :			Or
	$2 \times 6g \times \cos 20 = R \times 3$	M1A1		Moments about mid-point of rod:
	R = 36.8 N	A1		$2 \times S \times \cos 20 = P \times 1 \times \cos 20$
	(or resolving, $R = 6g \cos 20 - S \cos 20$			P = 39.2 N or 4g
(22)	$= 4g\cos 20$ Receive parallel to $4R$:			(Or resolving vertically $P = 4g$)
(ii)	Resolve parallel to AB : $S \cos 70 + F = 6g \cos 70$	M1		$ \begin{array}{l} R = P \times \cos 20 & \text{M1 A1} \\ = 36.8 \text{ N} & \text{A1} \end{array} $
	$F = 4g\cos 70$	1711		$F = P \times \sin 20$ A1
	= 13.4 N	A1	5	$\begin{vmatrix} I - I \wedge \sin 20 & \sin 20 \\ = 13.4 \text{ N} & \text{A1} \end{vmatrix}$
	(or $F = 6g \sin 20 - S \sin 20 = 4g \sin 20$)	111	3	711
(d)	Using $F = \mu R$:	M1		M1 '(c)(ii)' = μ '(c)(i)'
()	$13.4 = \mu \times 36.8$.,		(-)() (-)(-)
	$\mu = 0.364$ or tan 20	A1√	2	$(condone \ge)$
	Total	- -	12	(
	1 Utal		14	1

MM2B (cont)

Q Q	Solution	Marks	Total	Comments
8(a)	Using conservation of energy:			
	$\frac{1}{2}mv^2 = 3mg(1-\cos\theta)$	M1A1		$M1 \frac{1}{2} mv^2 = mgh$
	$v^2 = 6g(1 - \cos 15)$	m1		
	$v = (6g[1 - \cos 15])^{\frac{1}{2}}$ = 1.42	A 1	4	0.02 1.41
	= 1.42	A1	4	SC3: 1.41
(b)	When particle is at rest,			2
	resolve radially $T = mg \cos 15$	M1A1		M1 $T - mg \cos 15 = \frac{mv^2}{r}$ or $T = mg \sin 15$
	$22 = mg \cos 15$			
	m = 2.32 Total	A1	7	
				or
9	As particle moves, $T = \frac{mv^2}{r}$	M1		using unknown as extension:
	If radius is r , extension is $r - 1.2$	B1		If extension is x , radius is $1.2 + x$ B1
	Using $T = \frac{\lambda x}{l}$:			Using $T = \frac{\lambda x}{l}$:
	$T = \frac{192(r-1.2)}{1.2}$	M1		$T = \frac{192x}{1.2}$ M1
	= 160(r-1.2)	A1		= 160x A1
	$= 160(r - 1.2)$ $T = \frac{mv^2}{r} \Rightarrow 160(r - 1.2) = \frac{8 \times 3^2}{r}$	M1		$T = \frac{mv^2}{r} \Rightarrow 160x = \frac{8 \times 3^2}{1.2 + x}$ M1
				M1
	$160r^{2} - 192r = 72$ (or $192r^{2} - 230.4r = 86.4$)	A1		$192x + 160x^2 = 72$ A1
	$20r^2 - 24r - 9 = 0$			$20x^2 + 24x - 9 = 0$
	(10r+3)(2r-3) = 0	M1		(10x-3)(2x+3) = 0 M1
	r = 1.5 or -0.3		_	x = 0.3 or -1.5
	Radius is 1.5	A1	8	Radius is 1.5 A1
	Total		8	
	TOTAL		75	