

General Certificate of Education

Mathematics 6360

MM1B Mechanics 1B

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^0]
Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{lll}\text { M } & \text { mark is for method } & \\ \hline \text { m or dM } & \text { mark is dependent on one or more M marks and is for method } \\ \hline \text { A } & \text { mark is dependent on M or m marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1B

Q	Solution	Marks	Total	Comments
1(a)	$s=\frac{1}{2}(3+10) \times 3$	M1 A1		Finding distance by summing 3 areas or using formula for the area of a trapezium Correct equation/3 correct expressions for the areas
	$=19.5 \mathrm{~m}$	A1	3	Correct total distance
(b)	$a=\frac{3}{4}=0.75 \mathrm{~ms}^{-2}$	B1	1	Correct acceleration as a decimal or as a fraction
(c)	$T-400 g=400 \times 0.75$	M1 A1F		Three term equation of motion containing $T, 400 \mathrm{~g}$ and 400×0.75 or equivalent Correct equation
	$T=3920+300=4220 \mathrm{~N}$	A1F	3	Correct tension Only ft from $a=\frac{4}{3}$ (ft 4453 N or 4450 N from $a=\frac{4}{3}$ scores M1A1A1)
	Total		7	
2(a)	$\mathbf{F}=5 \mathbf{j}+8 \mathbf{i}-7 \mathbf{j}=8 \mathbf{i}-2 \mathbf{j}$	M1 A1	2	Adding the two forces. For incorrect answers, evidence of adding must be seen Correct resultant
(b)	$F=\sqrt{8^{2}+2^{2}}=\sqrt{68}=8.25 \mathrm{~N}$	M1		Finding magnitude (must see addition and not subtraction)
		A1F	2	Correct magnitude Accept $2 \sqrt{17}, \sqrt{68}$ or AWRT 8.25 (eg 8.246)
(c)		B1		Diagram with force in the correct quadrant and with correct direction shown by an arrow.
	$\tan \alpha=\frac{2}{8}$ $\alpha=14.0^{\circ}$	M1 A1	3	Using trig to find angle: if tan, 8 in denominator; if \sin or $\cos , 8.25$ or their answer to part (b) in denominator Correct angle Accept 14.1 or 14 or AWRT 14.0 (eg 14.04) M1 and A1 not dependent on B1
	Total		7	

MM1B (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 3(a)(i) \& $T=6 \times 9.8=58.8 \mathrm{~N}$ \& B1 \& 1 \& Use of tension being equal to the weight Accept $6 g$

\hline (a)(ii) \& $58.8=T+4 \times 9.8$ \& M1

A1 \& \multirow{3}{*}{3} \& | Three term equation for equilibrium containing 58.8, T and 4×9.8 or equivalent terms. |
| :--- |
| For M1, 58.8 can be replaced by candidates answer to part (a)(i) provided it is not zero. |
| Correct equation |

\hline \multirow{6}{*}{(b)} \& $$
\begin{aligned}
T & =58.8-39.2 \\
& =19.6 \mathrm{~N}
\end{aligned}
$$ \& A1 \& \& Correct tension Accept $2 g$

\hline \& $6 g-T=6 a$ \& M1
A1 \& \& Three term equation of motion for 6 kg particle containing 58.8 or $6 g, T$ and $6 a$. Correct equation

\hline \& $T-4 g=4 a$ \& M1
A1 \& \multirow[b]{2}{*}{5} \& Three term equation of motion for 4 kg particle containing 39.2 or $4 g, T$ and $4 a$. Correct equation

\hline \& $$
\begin{aligned}
2 g & =10 a \\
a & =1.96 \mathrm{~ms}^{-2}
\end{aligned}
$$ \& A1 \& \& Correct acceleration Candidates who work consistently to obtain $a=-1.96$ gain full marks.

\hline \& Special Case for whole system

$$
6 g-4 g=10 a
$$ \& (M1) \& \& Difference in weights equal to $10 a$

\hline \& $$
a=1.96
$$ \& \[

$$
\begin{aligned}
& \text { (A1) } \\
& \text { (A1) } \\
& \hline
\end{aligned}
$$

\] \& (3) \& | A1: Correct equation |
| :--- |
| A1: Correct acceleration |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

MM1B (cont)

MM1B(cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 6(a) \& \& B1 \& 1 \& \begin{tabular}{l}
Correct force diagram with labels and arrows \\
Accept components of the weight if shown in a different notation with the weight also shown. \\
B0 if components are shown instead of the weight.
\end{tabular} \\
\hline \multirow[t]{2}{*}{(b)} \& \((R=) 5 \times 9.8 \cos 40^{\circ}=37.5 \mathrm{~N} \quad \mathbf{A G}\) \& M1 \& \& Attempt at resolving perpendicular to the slope (eg 49sin \(40^{\circ}\)) \\
\hline \& \& A1 \& 2 \& Correct value from correct working \\
\hline \multirow[t]{4}{*}{(c)} \& \(5 \times 0.8=5 \times 9.8 \sin 40^{\circ}-\mu \times 5 \times 9.8 \cos 40^{\circ}\) \& B1 \& \& Use of \(F=\mu R\) at any stage and with any \(F\) but with \(R=37.5 \mathrm{OE}\) \\
\hline \& \& M1
A1

d1 \& \& Three term equation of motion from resolving parallel to the slope with weight component, friction and materm. Correct terms seen (may be as 31.5 , 37.5μ (or F) and 4)

\hline \& \& A1 \& \& Correct signs

\hline \& $$
\mu=\frac{5 \times 9.8 \sin 40^{\circ}-5 \times 0.8}{5 \times 9.8 \cos 40^{\circ}}=0.733
$$ \& \[

$$
\begin{gathered}
\text { m1 } \\
\text { A1 }
\end{gathered}
$$

\] \& 6 \& | Solving for μ |
| :--- |
| A1: Correct value for μ Allow 0.732 but not $\frac{11}{15}$ unless converted to a decimal |

\hline \multirow[t]{2}{*}{(d)} \& There is less friction so the coefficient of friction must be less. \& \[
$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& 2 \& | Less friction |
| :--- |
| Smaller coefficient of friction If the answer and explanation contradict each other, award no marks |

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

MM1B (cont)

MM1B (cont)

Q	Solution	Marks	Total	Comments
8(a)	$2 m-2 \times 3=m \times(-0.5)+3 \times 0.5$	M1		Equation for conservation of momentum with four terms: $2 m, 2 \times 3,0.5 m$ and 3×0.5 regardless of signs.
	$2.5 m=7.5$	A1		Correct equation with correct signs
	$m=3 \mathrm{~kg}$	A1	3	Correct mass
				Arguments based on the symmetry of the situation that lead to $m=3$ can be awarded full marks. Note: Consistent use of $m g$ instead of m : deduct one mark. Note: Use of all positive signs leads to m $=-3$, which might be changed to +3 by candidates (M1A0A0). Note: $m=3$ can be obtained via $1.5 m=$ 4.5 , which will usually score M1A0A0
(b)	$2 m-2 \times 3=m \times 0.5+3 \times 0.5$	M1		Four term equation for conservation of momentum with ± 0.5 for both velocities (no marks for $3 m \times 0.5$)
		A1		Correct equation
	$m=5 \mathrm{~kg}$ or	A1		Correct mass for velocity used
	$\begin{aligned} & 2 m-2 \times 3=m \times(-0.5)+3 \times(-0.5) \\ & 2.5 m=4.5 \end{aligned}$	M1		Equation for conservation of momentum with opposite sign for the 0.5
		A1	5	Correct mass for the velocity used
	Total		8	
	TOTAL		75	

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334) Registered address: AQA, Devas Street, Manchester M15 6EX

