Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2010

Mathematics

MM1A/W

Unit Mechanics 1A

Wednesday 9 June 2010 1.30 pm to 2.45 pm

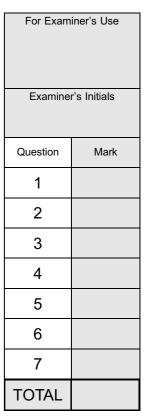
For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 15 minutes

Instructions

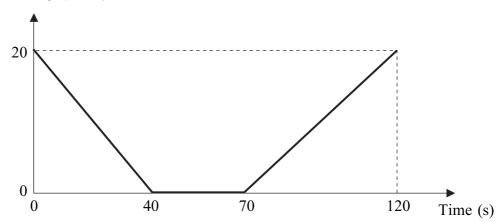

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take $g = 9.8 \text{ m s}^{-2}$, unless stated otherwise.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- Unit Mechanics 1A has a written paper and coursework.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.



Answer all questions in the spaces provided.

A bus slows down as it approaches a bus stop. It stops at the bus stop and remains at rest for a short time as the passengers get on. It then accelerates away from the bus stop. The graph shows how the velocity of the bus varies.

Velocity $(m s^{-1})$

Assume that the bus travels in a straight line during the motion described by the graph.

(a) State the length of time for which the bus is at rest. (1 mark)

(b) Find the distance travelled by the bus in the first 40 seconds. (2 marks)

(c) Find the total distance travelled by the bus in the 120-second period. (2 marks)

(d) Find the average speed of the bus in the 120-second period. (2 marks)

(e) If the bus had not stopped but had travelled at a constant 20 m s⁻¹ for the 120-second period, how much further would it have travelled? (2 marks)

QUESTION PART REFERENCE	
•••••	
•••••	

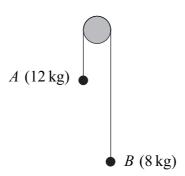
QUESTION	
QUESTION PART REFERENCE	
KEFEKENCE	
•••••	
• • • • • • • • • • • • • • • • • • • •	

2		A block, of mass 10 kg, is at rest on a rough horizontal surface, when a horizontal force, of magnitude <i>P</i> newtons, is applied to the block, as shown in the diagram.		
		<i>P</i> →		
		The coefficient of friction between the block and the surface is 0.5.		
(a)	Draw and label a diagram to show all the forces acting on the block.	(1 mark)	
(b) (i)	Calculate the magnitude of the normal reaction force acting on the block.	(1 mark)	
	(ii)	Find the maximum possible magnitude of the friction force between the block the surface.	ck and (1 mark)	
	(iii)	Given that $P = 30$, state the magnitude of the friction force acting on the b	lock. (1 mark)	
(с)	Given that $P = 80$, find the acceleration of the block.	(3 marks)	
QUESTION PART REFERENCE				
	•••••		••••••	
	•••••			
	•••••			
	•••••			
	•••••			
•••••				
	•••••			
	•••••			

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	

Two particles, A and B , are moving on a smooth horizontal plane when they collide. The mass of A is 6 kg and the mass of B is $m \log B$. Before the collision, the velocity of A is $\begin{bmatrix} 2 \\ 4 \end{bmatrix} \text{m s}^{-1}$ and the velocity of B is $\begin{bmatrix} 3 \\ -2 \end{bmatrix} \text{m s}^{-1}$. After the collision, the velocity of A is $\begin{bmatrix} 1 \\ 3 \end{bmatrix} \text{m s}^{-1}$ and the velocity of B is $\begin{bmatrix} 7 \\ b \end{bmatrix} \text{m s}^{-1}$.
velocity of A is $\begin{bmatrix} 3 \end{bmatrix}$ in s and the velocity of B is $\begin{bmatrix} b \end{bmatrix}$ in s .
Find m. (4 marks)
Find b. (2 marks)

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	


4		A particle, of mass $m \log m$ kg, is at rest on a rough plane which is inclined at an 42° to the horizontal, as shown in the diagram.	n angle of
		42°	
		The friction force acting on the particle has magnitude 30 newtons.	
(a)	Draw and label a diagram to show all the forces acting on the particle.	(1 mark)
(b)	Find <i>m</i> .	(3 marks)
(с	:)	Find the magnitude of the normal reaction force acting on the particle.	(2 marks)
(d	1)	Given that the particle is on the point of sliding down the plane, find the c of friction between the particle and the plane.	oefficient (3 marks)
QUESTION PART REFERENCE			
·····			
•••••			
	•••••		
•••••			
•••••			
	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
•••••			

QUESTION PART REFERENCE	
••••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
•••••	
••••••	

Two particles, A and B, have masses 12 kg and 8 kg respectively. They are connected by a light inextensible string that passes over a smooth fixed peg, as shown in the diagram.

The particles are released from rest and move vertically. Assume that there is no air resistance.

- (a) By forming two equations of motion, show that the magnitude of the acceleration of each particle is $1.96 \,\mathrm{m\,s^{-2}}$. (5 marks)
- **(b)** Find the tension in the string.

(2 marks)

- (c) After the particles have been moving for 2 seconds, both particles are at a height of 4 metres above a horizontal surface. When the particles are in this position, the string breaks.
 - (i) Find the speed of particle A when the string breaks.

(2 marks)

(ii) Find the speed of particle A when it hits the surface.

(3 marks)

QUEUTION	
PART	
REFERENCE	
TIEF ENTERVOL	

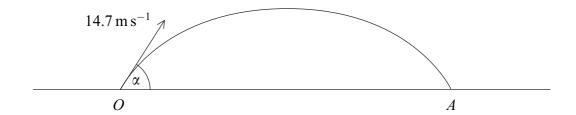
QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

6	A ship moves with constant acceleration.	At time t seconds, its velocity is $\mathbf{v} \mathbf{m} \mathbf{s}^{-1}$,
	where	

$$\mathbf{v} = (9 - 0.01t)\mathbf{i} + (7 - 0.03t)\mathbf{j}$$

The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively.

- (a) Write down the velocity of the ship when t = 0. (1 mark)
- (b) Find the acceleration of the ship. (2 marks)
- (c) Find t when the ship is travelling south-east. (3 marks)

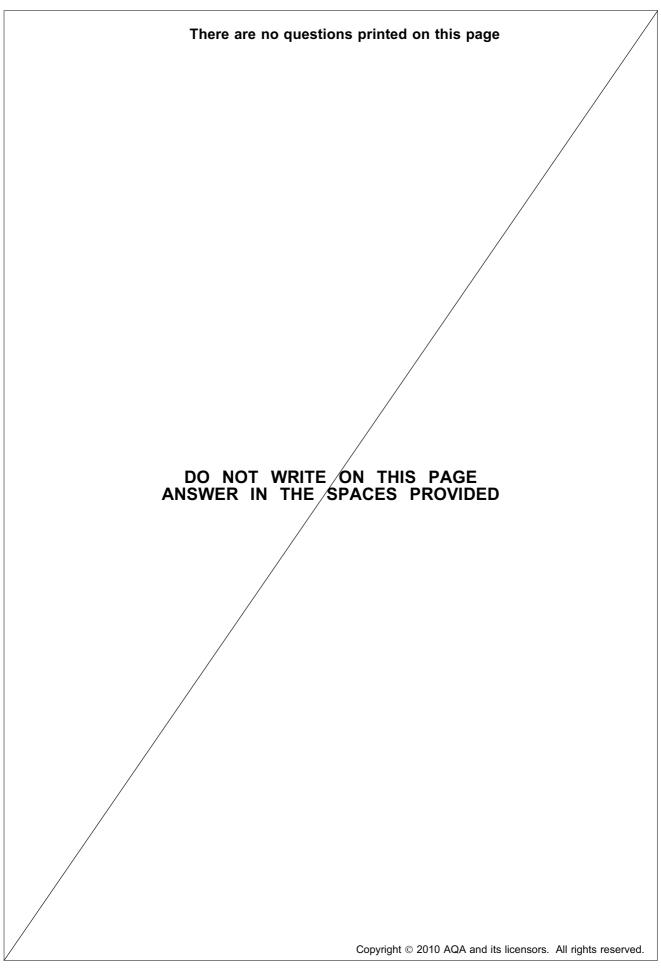

QUESTION PART REFERENCE	
•••••	
•••••	

QUESTION PART REFERENCE	
••••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
••••••	
••••••	

A ball is struck so that it leaves a horizontal surface travelling at $14.7 \,\mathrm{m\,s^{-1}}$ at an angle α above the horizontal. The path of the ball is shown in the diagram.

- (a) Show that the ball takes $\frac{3 \sin \alpha}{2}$ seconds to reach its maximum height. (3 marks)
- **(b)** The ball reaches a maximum height of 7 metres.

(i) Find α . (5 marks)


(ii) Find the range, OA. (3 marks)

QUESTION PART REFERENCE	
REFERENCE	

QUESTION PART REFERENCE			
	L		
	END OF QUESTIONS		

