

General Certificate of Education

Mathematics 6360

MM04 Mechanics 4

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
A	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
Е	mark is for explanation				
$\sqrt{\text{or ft or F}}$	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM04

Q	Solution	Mark	Total	Comments
1(a)(i)	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \\ 5 \end{pmatrix} + \mathbf{F} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	M1		sum of forces = 0 must be seen for M1
	$\Rightarrow \mathbf{F} = \begin{pmatrix} -5\\1\\-8 \end{pmatrix}$	B1 A1	3	$\pm (5\mathbf{i} - \mathbf{j} + 8\mathbf{k})$ seen correct sign
(ii)	$ \mathbf{F} = \sqrt{5^2 + 1^2 + 8^2} = \sqrt{90} = 3\sqrt{10}$	M1		√their F components
		A1	2	AG
(b)	Moment = $\mathbf{r} \times \mathbf{F}$ = $\begin{vmatrix} \mathbf{i} & 1 & 1 \\ \mathbf{j} & -1 & 2 \\ \mathbf{k} & 6 & 3 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & 0 & 4 \\ \mathbf{j} & 3 & -3 \\ \mathbf{k} & -2 & 5 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & 0 & -5 \\ \mathbf{j} & 3 & 1 \\ \mathbf{k} & -2 & -8 \end{vmatrix}$	M1 M1		attempt at one $\mathbf{r} \times \mathbf{F}$ (all attempted)
	$= \begin{pmatrix} -15 \\ 3 \\ 3 \end{pmatrix} + \begin{pmatrix} 9 \\ -8 \\ -12 \end{pmatrix} + \begin{pmatrix} -22 \\ 10 \\ 15 \end{pmatrix}$	A1√ A1√		any three components correct all components correct
	$= \begin{pmatrix} -28 \\ 5 \\ 6 \end{pmatrix}$	A1√	5	sum of vectors; √ their F from part (a)
	1 st Alternative for (b):			
	$\overrightarrow{QP} = \begin{pmatrix} 1 \\ -4 \\ 8 \end{pmatrix}$	(M1)		intention to use $\mathbf{r} \times \mathbf{F}$ about Q
	(8)	(A1)		\overrightarrow{QP} obtained correctly
	Moments about Q $QP \times \mathbf{F}_1 = \begin{vmatrix} \mathbf{i} & 1 & 1 \\ \mathbf{j} & -4 & 2 \\ \mathbf{k} & 8 & 3 \end{vmatrix} = \begin{pmatrix} -28 \\ 5 \\ 6 \end{pmatrix}$	(M1) (A1) (A1)	(5)	determinant attempted one component correct all correct
	2 nd Alternative for (b):	, ,	, ,	
	$\overrightarrow{PQ} = \begin{pmatrix} -1\\4\\-8 \end{pmatrix}$	(M1) (A1)		intention to use $\mathbf{r} \times \mathbf{F}$ about P \overrightarrow{PQ} obtained correctly
	$\begin{vmatrix} \mathbf{i} & -1 & -5 \\ \mathbf{j} & 4 & 1 \\ \mathbf{k} & -8 & -8 \end{vmatrix} = \begin{pmatrix} -24 \\ 32 \\ 19 \end{pmatrix}$	(M1)		one determinant correct
	$\begin{vmatrix} \mathbf{i} & -1 & 4 \\ \mathbf{j} & 4 & -3 \\ \mathbf{k} & -8 & 5 \end{vmatrix} = \begin{pmatrix} -4 \\ -27 \\ -13 \end{pmatrix}$	(A1)		both correct
	$ \begin{pmatrix} -24 \\ 32 \\ 19 \end{pmatrix} + \begin{pmatrix} -4 \\ -27 \\ -13 \end{pmatrix} = \begin{pmatrix} -28 \\ 5 \\ 6 \end{pmatrix} $	(A1)	(5)	all correct
	Total		10	

MM04 (cont	Solution	Mark	Total	Comments
	$volume = \pi \int y^2 dx$	-		
	$=\pi\int_0^2 \left(4-x^2\right) \mathrm{d}x$	M1		evidence of attempt at $\int y^2 dx$
	$=\pi \left[4x - \frac{x^3}{3}\right]_0^2$	A1		integrating
	$=\pi \left[8 - \frac{8}{3} - 0\right]$ $= \frac{16\pi}{3}$	A1	3	AC
	3	Al	3	AG
(b)	$\frac{16\pi}{3}\overline{x} = \pi \int_0^2 x(4-x^2) \mathrm{d}x$			
	$\frac{16\pi}{3}\overline{x} = \pi \int_0^2 x(4-x^2) dx$ $= \pi \int_0^2 (4x - x^3) dx$	M1		attempt at $\int xy^2 dx$
	$=\pi\bigg[2x^2-\frac{x^4}{4}\bigg]_0^2$	A1		integrating correctly
	$= \pi [8 - 4 - 0]$ $= 4\pi$	m1		equation to find \bar{x} (dependent on first M1)
	$\Rightarrow \overline{x} = \frac{3}{4}$	A1	4	
(c)				
	$\frac{2}{4}G$			
	<u>3</u>			
	$\tan\theta = \frac{4}{2}$	M1		$\tan \theta$ seen
	$=\frac{3}{8}$	A1√		structure correct $\frac{\overline{x}}{2}$
	$\Rightarrow \theta = 20.6^{\circ}$	A1√	3	accept AWFW 20° – 21°; \checkmark their \overline{x}
	Total		10	

VIVIU4 (cont Q	Solution	Mark	Total	Comments
3(a)(i)	T_3 T_4 T_1 T_2 T_2 T_1 T_2 T_1 T_1 T_2 T_1 T_1 T_2 T_1 T_2 T_1 T_2 T_3 T_4 T_1 T_1 T_2 T_1 T_2 T_3 T_4 T_4 T_1 T_2 T_3 T_4 T_4 T_1 T_2 T_3 T_4 T_4 T_4 T_5 T_7 T_8 T_8 T_8 T_8 T_8 T_9 T_9 T_9	M1A1		forces can be marked as tensions and/or compressions; signs must be consistent
	$\Rightarrow T_1 = \frac{-500}{\sin 45^\circ} = -500\sqrt{2} \text{ or } -707 \text{ N}$ [magnitude = 707 N]			NB if moments are used, reaction forces at <i>C</i> , <i>D</i> must be identified for first M1
	Resolve horizontally at B: $T_2 + T_1 \cos 45^\circ = 0$ $\Rightarrow T_2 = -T_1 \cos 45^\circ = 500 \text{ N}$	M1A1 A1√		
	Resolve horizontally at A: $T_2 = T_3 \sin 30^\circ$ $\Rightarrow T_3 = \frac{T_2}{\sin 30^\circ} = 1000 \text{N}$	M1A1 A1√	9	
(ii)	AD and AB are in tension and could be replaced by ropes. BC is in thrust and cannot be replaced by ropes.	B1 B1 E1	3	identification of AD/AB identification of BC (can be implied) reference to tension/thrust
(b)	magnitude = $T_3 = 1000 \mathrm{N}$	B1√	1	
	Total		13	

Q Q	Solution	Mark	Total	Comments
4(a)	On point of toppling, take moments about		10001	
	bottom right corner	M1		attempt at moments
	(-)			
	$W(2a) = P\cos\theta(8a)$	A1,A1		A1 each side
	$P = \frac{W}{4\cos\theta}$	A1	4	
	$4\cos\theta$			
(b)	On point of sliding			
	vertically, $N + P \sin \theta = W$	M1A1		
	horizontally, $F = P \cos \theta$	M1A1		
	friction $F = \mu N$			
	$\Rightarrow P\cos\theta = \mu(W - P\sin\theta)$	M1A1		substitute; use of $F = \mu N$
	$P\cos\theta = \mu W - \mu P\sin\theta$			
	$P(\cos\theta + \mu\sin\theta) = \mu W$			
	$P = \frac{\mu W}{\cos \theta + \mu \sin \theta}$	A1	7	AG
	$\cos\theta + \mu\sin\theta$	711	,	
(c)	Slides before topples ⇒			
	$\frac{\mu W}{\cos\theta + \mu\sin\theta} < \frac{W}{4\cos\theta}$	M1		inequality formed
	$4\mu\cos\theta < \cos\theta + \mu\sin\theta $ $4\cos\theta$ $4\mu\cos\theta < \cos\theta + \mu\sin\theta$	A1		elimination of fractions / cancel W
	$4\mu < 1 + \mu \tan \theta$	A1		÷ by $\cos \theta$ and use of $\tan \theta = 1$
	$\tan \theta = 1 \Rightarrow 3\mu < 1$	M1		collect μ terms
	1		_	,
	$\mu < \frac{1}{3}$	A1	5	
5 (-)	Total 4a		16	
5(a)	6a			
	$mass = m = 24a^2 \rho$			
	$\therefore \rho = \frac{m}{24a^2}$	В1		use of area × density
	=	51		ase of area / delisity
	Mass of strip = $6a\delta x \rho$ MI of rectangle			
	$=\sum \frac{4}{3}(6a\delta x\rho)(3a)^2 = \sum 72a^3\rho\delta x$	M1		use of $\frac{4}{3}ml^2$
	$\mathbb{Z}_3^{(3nemp)(en)}$	A1		m, l correct
	(^{4a} 72 3 <i>m</i>			
	$= \int_0^{4a} 72a^3 \frac{m}{24a^2} \mathrm{d}x$	m1		integrating - dependent on first M1
	$= \left[3max\right]_0^4 = 12ma^2$	A1	5	AG

Q	Solution	Mark	Total	Comments
5	Alternative for (a):			
	$\rho = \frac{m}{24a^2}$	(B1)		
	Mass of strip = $4a\delta x\rho$			
	MI of rectangle = $\sum (4a\delta x \rho)x^2$	(M1)		use of mx^2
	$= \int_0^{6a} 4a \frac{m}{24a^2} x^2 \mathrm{d}x$	(m1)		integration attempt
	$=\left[\frac{mx^3}{18a}\right]_0^{6a}=12ma^2$	(A1, A1)	(5)	AG
(b)	$\frac{1}{2}m$ w $\frac{3}{2}m$ w			
	Before After angular momentum before			
	$=\frac{1}{2}mu(3a)=\frac{3mua}{2}$	M1A1		'ka' required for M1
	angular momentum after	3.41		
	$=Iw+\frac{1}{2}m(3a)^2w$	M1 A1		either term correct both correct
	$=12ma^2w+\frac{9ma^2}{2}w$	B1		use of $I = 12ma^2$ anywhere
	$=\frac{33ma^2w}{2}$			
	use C of momentum to set			
	$\frac{3mua}{2} = \frac{33ma^2w}{2}$	M1		equation – C of m ('their' expression)
	$\Rightarrow w = \frac{u}{11a}$	A1	7	
	Total		12	

Q	Solution	Mark	Total	Comments
6(a)	Ó			
	Ö			
	$\begin{pmatrix} r\ddot{\theta} \end{pmatrix}$			
	T \bigvee S			
	$T ightharpoonup ightharpoonup S ightharpoonup r \dot{ heta}$			
	, ,			
	2 mg 4 mg			
(i)	KE =			
	$\frac{1}{2}(4m)(a\dot{\theta})^2 + \frac{1}{2}(2m)(a\dot{\theta})^2 + \frac{1}{2}(10ma^2)\dot{\theta}^2$	B1		$a\dot{ heta}$ used
		B1		disc KE
	$=2ma^2\dot{\theta}^2+ma^2\dot{\theta}^2+5ma^2\dot{\theta}^2$	M1		particles KE
	$=8ma^2\dot{\theta}^2$	A1	4	AG
(ii)	PE lost = $4mga\theta - 2mga\theta$			
(11)	$= 2mga\theta$	B1		PE seen - any term
	$C \text{ of } E \Rightarrow 8ma^2 \dot{\theta}^2 = 2mga\theta$	M1		C of E
	$C \text{ of } E \rightarrow 8ma \text{ o } -2mgao$	1V1 1		COLE
	$a\dot{\theta}^2 = \frac{g\theta}{4}$	A1	3	AG
	$g\dot{ heta}$	2.54		
(b)	differentiating $2a\dot{\theta}\ddot{\theta} = \frac{g\dot{\theta}}{4}$	M1		
	$\Rightarrow a\ddot{\theta} = \frac{g}{8}$			
	O	A1		
	For P,			
	$T - 2mg = 2ma\ddot{\theta} \Rightarrow T = 2mg + \frac{mg}{4} = \frac{9mg}{4}$	M1		equation for P
				for $\frac{9mg}{4}$
		A1		4
	For Q ,			
	$4mg - S = 4ma\ddot{\theta} \Rightarrow S = 4mg - \frac{mg}{2} = \frac{7mg}{2}$	M1A1		equation for Q
	2 2			. ~
		A 1	7	for $\frac{7mg}{2}$
	Alternative for (b):			2
	Use $C = I\ddot{\theta}$ for disc			
	$Sa - Ta = 10ma^2 \ddot{\theta}$	(M1)		M1 for LHS attempt
	$\Rightarrow S - T = 10ma\ddot{\theta}$	(A1)		RHS correct
	For P , $T - 2mg = 2ma\ddot{\theta}$	(M1)		
	For Q , $4mg - S = 4ma\ddot{\theta}$	(M1)		
	Solving	(M1)		
	For T	(A1)	(7)	
	For S Total	(A1)	(7) 14	
	TOTAL		75	