

General Certificate of Education

Mathematics 6360

MM04 Mechanics 4

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
A	mark is dependent on M or m marks and	l is for accuracy	T .		
В	mark is independent of M or m marks ar	nd is for method	d and accuracy		
Е	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct x marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM04

Q	Solution	Marks	Total	Comments
1(a)	i j k			
	2			
	3 -5 a	M1		\sum forces = 0
	b +5 -2	1711		Z forces = 0
	$\overline{0}$ $\overline{0}$ $\overline{0}$			
	$\frac{b +5 -2}{0 0 0}$ $\Rightarrow b = -5, \ a = 2$	A1	2	Both correct
(b)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{vmatrix} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 1 \\ -5 & 5 & -2 \end{vmatrix}$	M1		Intention to find $\mathbf{r} \times \mathbf{F}$ [or $\mathbf{F} \times \mathbf{r}$]
	1 1 0 + -1 2 1			
	2 0 0 -5 5 -2	A1		Two correct non zero determinants
	$= -2\mathbf{k} - 9\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}$			attempted
	= -9i - 7j + 3k $= -9i - 7j + 3k$	A1	4	At least two non zero terms correct
	Total	A1	6	Fully simplified. Lose 1 if $\mathbf{F} \times \mathbf{r}$ found
2(a)(i)		M1	<u> </u>	Adding forces
	$ \begin{pmatrix} 8+6+-2+0\\ 4+5-2-2 \end{pmatrix} = \begin{pmatrix} 12\\ 5 \end{pmatrix} $	A1		$R_x = 12 R_y = 5$
		711		, y
	$ F = \sqrt{12^2 + 5^2} = 13$	A1√	2	Follow through mis totals was of
	$ \Gamma - \sqrt{12} + 3 - 13$	A1√	3	Follow through mis-totals – use of Pythagoras' rule
				Tylingorus Ture
(ii)	Moment of forces about O			
	=-6(3)-2(3)-2(4)+2(4)	M1 A1		One term correct All terms correct
	10 6 0 0	Al		[NB ± can be reversed]
	=-18-6-8+8 = -24			[IVD = call be reversed]
	-12d = -24	M1		Equation formed $R_x d$ = Total moment
	∴ <i>d</i> = 2	A1	4	Printed answer
	Alternative			
	Total Moment = -24	(M1)		
	Equation of line of action is	(A1)		
	Equation of line of action is			
	$y = \frac{5}{12} \left(x + \frac{24}{5} \right)$	(M1)		
	· · · ·			
	When $x = 0$, $y = 2$	(A1)		
(b)		D1 ^		
(b)	c = 24	B1√		Follow through (a)(ii)
				ie their total moment
		B1√	2	Accept 'clockwise'
		D1 V	_	Follow through their direction from (a)(ii)
	0.			
	Total		9	

MINIU4 (cont				
Q	Solution	Marks	Total	Comments
3(a)	Take moments at A for system			
	P(l) = 100(2l)	M1		Moments for system
	$\Rightarrow P = 200 \mathrm{N}$	A1	2	
		711	2	
(b)(i)	For whole system to be in equilibrium;			
(-)()	$X = 200 \text{ left} \qquad Y = 100 \text{ up}$	M1		Balances system and uses Pythagoras'
		1V11		rule
	∴ magnitude = $100\sqrt{5}$ N	A1	2	Accept 224, $\sqrt{50000}$
	magmtude = 100 \ 3 N	AI	2	Accept 224, \(\sqrt{50000}\)
	(100)			
(ii)	Angle = $\tan^{-1} \left(\frac{100}{200} \right) = 27^{\circ}$	B1	1	Condone unrounded answers
	(200)			
	↑100			
(c)	200 7 7			
(c)	$A \xrightarrow{\cdot a} B$			
	TAE			
	TAE			
	200 F T _{SE}			
	$E \longrightarrow D \longrightarrow C$			
	By considering forces at A			
	$T_{AB} = 200$	B1		
	$T_{AE} = 100$	В1		
	By considering forces at E			
	Vertically, $T_{AE} + T_{BE} \cos 45^{\circ} = 0$	M1		Form equation
	$T_{BE} = 100\sqrt{2}$			
	BE	A1		Accept 141
	AB in tension, AE in tension, BE in			
	compression	B1	5	All correct
	Total	21	10	
	Total		10	

Q	Solution	Marks	Total	Comments
4(a)	M			
	F	B1	2	Three forces Alternative: N/F combined Through one point
(b)	Ψ_W About to topple $\Rightarrow \tan \alpha = \frac{d}{3d}$	M1		Use of $\tan \alpha$ $\frac{d}{3d} \text{ used or } \frac{3d}{d}$
	$\therefore \alpha = \tan^{-1} \left(\frac{1}{3} \right)$ $= 18.4^{\circ}$	A1	3	3d d Accept 18°
(c)	Parallel to plane $W \sin \alpha = F$ Perpendicular to plane	M1		Attempt to resolve parallel or perpendicular to the plane
	$W \cos \alpha = N$ Law of friction $F \le \mu N$	A1		Both correct
	$\mu = \frac{2}{9} : W \sin \alpha \le \frac{2}{9} W \cos \alpha$	M1		Law of friction used
	$\tan \alpha \le \frac{2}{9}$	A1		$\tan \alpha$ or α obtained or inequality stated
	$\frac{2}{9} < \frac{1}{3} \text{ or } 13^{\circ} < 18^{\circ}$			
	Slide first	A1	5	Comparison and conclusion – correct answer only
	Total		10	[N.B. Accept (b) and (c) in any order]
	1 otal		10	

Q	Solution	Marks	Total	Comments
5(a)	For cylinder, $C = I\ddot{\theta}$			
	$\Rightarrow Tr = 4mr^2\ddot{\theta}$	M1A1		Use of $C = I \ddot{\theta}$
	$\therefore T = 4mr\ddot{\theta}$			
	For particle $2mg - T = 2mr\ddot{\theta}$ 2	M1		Attempt to use $F = ma$
		A1A1		A1 RHS A1 LHS
	$1+2 \ 2mg = 6mr\ddot{\theta}$			
	$\ddot{\theta} = \frac{g}{3r}$	A 1	(Deinted an array
	3r	A1	6	Printed answer
	Alternative:			
	KE of cylinder = $\frac{1}{2}I\dot{\theta}^2$			
	$=\frac{1}{2}(4mr^2)\dot{\theta}^2$			
	$2 \begin{pmatrix} 1 \\ -2mr^2 \dot{\theta}^2 \end{pmatrix}$	(M1)		Attampt at an apparent tarm
		(M1)		Attempt at one energy term
	KE of particle $=\frac{1}{2}mv^2$			
	$=\frac{1}{2}(2m)(r\dot{\theta})^2$			
	$=mr^2\dot{\theta}^2$			
	PE of particle = mgh			
	$=2mgr\theta$	(A2,1,0)		Energy terms correct
	Conservation of energy			
	$2mr^2\dot{\theta}^2 + mr^2\dot{\theta}^2 = 2mgr\theta$			
	$3r\dot{\theta}^2 = 2g\theta$	(M1)		Form equation
	Differentiating $6r\dot{\theta}\ddot{\theta} = 2g\dot{\theta}$	(A1)		Correct differentiation
	\Rightarrow 6 $r\ddot{\theta} = 2g$			
	$\ddot{\theta} = \frac{g}{3r}$	(A1)		Printed answer
(b)				
	$=\frac{4mg}{2}$	B1	1	Substitute - must cancel <i>r</i>
	Total		7	
	Total		,	

$\begin{array}{ c c c c }\hline Q & Solution & Marks & Total & Comments \\\hline\hline G(a)(i) & Use of I = & \frac{f_{xy}dx}{f_{y}dx} & M1 & Stated or used \\\hline\hline & \int y \ dx = semi circle area = & \frac{1}{2}\pi r^2 & A1 & Explains need for 2 \times Integral \\ & \frac{1}{2}\pi r^2 \overline{x} = \int_0^z 2 \sqrt{r^2 - x^2} \ dx & A1 & Use of & y = \sqrt{r^2 - x^2} \ and & rearrangement \\\hline\hline & Alternative & Mass of elemental strip = & 2y \(\delta x \rho x \) & (M1) & Elemental strip identified & Integral formed \\\hline\hline & Total moment = & \rho \int_0^z 2xy \ dx & (A1) & Integral formed & Use of & \sum (m1) & Equation formed & Use of & \sum (m2) \ \delta x \rho x^2 - x^2 \ \ dx = & \frac{1}{2}\pi r^2 \overline{x} & (A1) & Use of & \sum (r^2 - x^2) = & y and & \frac{1}{2}\pi r^2 & (A1) & Use of & \sum (r^2 - x^2) = & y and & \frac{1}{2}\pi r^2 & (A2) & (A3) & Attempt to integrate - inspection or substitution & Integrate dorrectly and limits substituted - condone sign error & (B)(i) & \frac{2}{3}(1.2) = 0.8 \ m & B1 & 1 & (ii) & 1.2 + & \frac{4(0.5)}{3\pi} = 1.41 \ m & B1 & 1 & (iii) & 1.2 + & \frac{4(0.5)}{3\pi} = 1.41 \ m & B1 & 1 & (iii) & 1.2 + & & \frac{4(0.5)}{3\pi} = 1.41 \ m & (iii) & 1.2 + & \frac{4(0.5)}{3\pi} = 1.41 \ m & (iii) & 1.2 + & \frac{4(0.5)}{3\pi} = 1.41 \ m & (iiii) & 1.2 + & \frac{4(0.5)}{3\pi} = 1.41 \ m & (iiiiii) & 1.2 + & \frac{4(0.5)}{3\pi} = 1.41 \ m & (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$	MM04 (cont				
Use of $I = \frac{1}{\int y dx}$ M1 $\int y dx = \text{semicircle area} = \frac{1}{2}\pi r^2$ Use of diagram/by symmetry, $\overline{x} = 21$ A1 $\frac{1}{2}\pi r^2 \overline{x} = \int_{o}^{r} 2x\sqrt{r^2 - x^2} dx$ A1			Marks	Total	Comments
$\int y dx = \text{semi circle area} = \frac{1}{2}\pi r^2$ Use of diagram/by symmetry, $\overline{x} = 21$ $\frac{1}{2}\pi r^2 \overline{x} = \int_0^r 2x\sqrt{r^2 - x^2} dx$ A1 A1 A1 A1 Explains need for $2 \times \text{Integral}$ Use of $y = \sqrt{r^2 - x^2}$ and rearrangement Alternative Mass of elemental strip $= 2y \delta x \rho$ Moment of elemental strip $= 2y \delta x \rho x$ (M1) Total moment $= \rho \int_0^r 2xy dx$ Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_0^r 2xy dy = \frac{1}{2}\rho \pi r^2 \overline{x}$ (M1) $\Rightarrow \int_0^r 2x\sqrt{r^2 - x^2} dx = \frac{1}{2}\pi r^2 \overline{x}$ (M1) $\Rightarrow \int_0^r 2x\sqrt{r^2 - x^2} dx = \left[-\frac{2}{3}(r^2 - x^2)^{\frac{3}{2}}\right]_0^r$ M1 A1 A1 A1 A1 A1 A1 Explains need for $2 \times \text{Integral}$ Use of $y = \sqrt{r^2 - x^2}$ and rearrangement [Allow $\rho = 1$ throughout] Elemental strip identified Integral formed Use of $\sqrt{r^2 - x^2} = y$ and $$	6(a)(i)	$\int xy dx$			$[\rho = 1 \text{ allowed throughout}]$
$\int y dx = \text{semi circle area} = \frac{1}{2}\pi r^2$ Use of diagram/by symmetry, $\overline{x} = 21$ $\frac{1}{2}\pi r^2 \overline{x} = \int_0^r 2x\sqrt{r^2 - x^2} dx$ A1 A1 A1 A1 Explains need for $2 \times \text{Integral}$ Use of $y = \sqrt{r^2 - x^2}$ and rearrangement Alternative Mass of elemental strip $= 2y \delta x \rho$ Moment of elemental strip $= 2y \delta x \rho x$ (M1) Total moment $= \rho \int_0^r 2xy dx$ Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_0^r 2xy dy = \frac{1}{2}\rho \pi r^2 \overline{x}$ (M1) $\Rightarrow \int_0^r 2x\sqrt{r^2 - x^2} dx = \frac{1}{2}\pi r^2 \overline{x}$ (M1) $\Rightarrow \int_0^r 2x\sqrt{r^2 - x^2} dx = \left[-\frac{2}{3}(r^2 - x^2)^{\frac{3}{2}}\right]_0^r$ M1 A1 A1 A1 A1 A1 A1 Explains need for $2 \times \text{Integral}$ Use of $y = \sqrt{r^2 - x^2}$ and rearrangement [Allow $\rho = 1$ throughout] Elemental strip identified Integral formed Use of $\sqrt{r^2 - x^2} = y$ and $$		Use of $I = \frac{1}{\int v dx}$	M1		Stated or used
Use of diagram/by symmetry, $\overline{x} = 21$ $\frac{1}{2}\pi r^2 \overline{x} = \int_0^r 2x \sqrt{r^2 - x^2} dx$ A1		J			
$\frac{1}{2}\pi r^2 \overline{x} = \int_0^r 2x \sqrt{r^2 - x^2} dx$ A1 Alternative Mass of elemental strip = $2y \delta x \rho$ Moment of elemental strip = $2y \delta x \rho x$ Total moment = $\rho \int_0^r 2xy dx$ Use of $\sum_0^r 2xy dx$ (M1) Elemental strip identified Integral formed Use of $\sum_0^r 2xy dy = \frac{1}{2}\rho \pi r^2 \overline{x}$ (M1) Equation formed $\Rightarrow \int_0^r 2x \sqrt{r^2 - x^2} dx = \frac{1}{2}\pi r^2 \overline{x}$ (M1) $\int_0^r 2x \sqrt{r^2 - x^2} dx = \left[-\frac{2}{3}(r^2 - x^2)^{\frac{3}{2}}\right]_0^r$ M1 A1 A1 Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		$\int y dx = \text{semi circle area} = \frac{1}{2} \pi r^2$	A1		
$\frac{1}{2}\pi r^2 \overline{x} = \int_0^r 2x \sqrt{r^2 - x^2} dx$ All 4 Use of $y = \sqrt{r^2 - x^2}$ and rearrangement Alternative Mass of elemental strip $= 2y \delta x \rho$ Moment of elemental strip $= 2y \delta x \rho x$ (M1) Total moment $= \rho \int_0^r 2xy dx$ Use of $\sum_0^r (mx) = (\sum_0^r m) \overline{x}$ Gives $\rho \int_0^r 2xy dy = \frac{1}{2}\rho \pi r^2 \overline{x}$ (M1) Equation formed $\Rightarrow \int_0^r 2x \sqrt{r^2 - x^2} dx = \frac{1}{2}\pi r^2 \overline{x}$ (M1) Equation formed Use of $\sqrt{r^2 - x^2} = y$ and $\frac{1}{2}\pi r^2$ Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		Use of diagram/by symmetry, $\bar{x} = 2I$	A 1		Explains need for 2 × Integral
Alternative Mass of elemental strip = $2y \delta x \rho$ Moment of elemental strip = $2y \delta x \rho x$ Total moment = $\rho \int_{0}^{r} 2xy dx$ Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_{0}^{r} 2xy dy = \frac{1}{2}\rho \pi r^{2}\overline{x}$ (M1) Elemental strip identified Integral formed Use of $\sqrt{r^{2} - x^{2}} dx = \frac{1}{2}\pi r^{2}\overline{x}$ (M1) Equation formed Use of $\sqrt{r^{2} - x^{2}} = y$ and $\frac{1}{2}\pi r^{2}$ (M1) Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error			711		
Alternative Mass of elemental strip = $2y \delta x \rho$ Moment of elemental strip = $2y \delta x \rho x$ Total moment = $\rho \int_{0}^{r} 2xy dx$ Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_{0}^{r} 2xy dy = \frac{1}{2}\rho \pi r^{2}\overline{x}$ (M1) Elemental strip identified Integral formed Use of $\sqrt{r^{2} - x^{2}} dx = \frac{1}{2}\pi r^{2}\overline{x}$ (M1) Equation formed Use of $\sqrt{r^{2} - x^{2}} = y$ and $\frac{1}{2}\pi r^{2}$ (M1) Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		$\frac{1}{2}\pi r^2 \overline{x} = \int 2x\sqrt{r^2 - x^2} \mathrm{d}x$	A1	4	Use of $y = \sqrt{r^2 - x^2}$ and rearrangement
Mass of elemental strip = $2y \delta x \rho$ Moment of elemental strip = $2y \delta x \rho x$ Moment of elemental strip = $2y \delta x \rho x$ Total moment = $\rho \int_0^r 2xy dx$ Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_0^r 2xy dy = \frac{1}{2} \rho \pi r^2 \overline{x}$ (M1) Equation formed $\Rightarrow \int_0^r 2x \sqrt{r^2 - x^2} dx = \frac{1}{2} \pi r^2 \overline{x}$ (M1) $\int_0^r 2x \sqrt{r^2 - x^2} dx = \left[-\frac{2}{3} (r^2 - x^2)^{\frac{3}{2}} \right]_0^r$ Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		2 o			
Moment of elemental strip $= 2y \delta x \rho x$ (M1) Total moment $= \rho \int_{0}^{r} 2xy dx$ (A1) Use of $\sum (mx) = (\sum m)\overline{x}$ (M1) $\Rightarrow \int_{0}^{r} 2x\sqrt{r^2 - x^2} dx = \frac{1}{2}\pi r^2 \overline{x}$ (M1) Elemental strip identified Integral formed Use of $\sqrt{r^2 - x^2} = y$ and $\sqrt{r^2 - x^2} $		Alternative			
Moment of elemental strip $= 2y \delta x \rho x$ (M1) Total moment $= \rho \int_{0}^{r} 2xy dx$ (A1) Use of $\sum (mx) = (\sum m)\overline{x}$ (M1) Gives $\rho \int_{0}^{r} 2xy dy = \frac{1}{2} \rho \pi r^2 \overline{x}$ (M1) $\Rightarrow \int_{0}^{r} 2x \sqrt{r^2 - x^2} dx = \frac{1}{2} \pi r^2 \overline{x}$ (A1) Use of $\sqrt{r^2 - x^2} = y$ and $\frac{1}{2} \pi r^2$ (ii) $\int_{0}^{r} 2x \sqrt{r^2 - x^2} dx = \left[-\frac{2}{3} (r^2 - x^2)^{\frac{3}{2}} \right]_{0}^{r}$ Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		Mass of elemental strip = $2y \delta x \rho$			[Allow $\rho = 1$ throughout]
Total moment = $\rho \int_{0}^{r} 2xy dx$ [A1] Use of $\sum (mx) = (\sum m)\overline{x}$ [M1] Gives $\rho \int_{0}^{r} 2xy dy = \frac{1}{2}\rho\pi r^{2}\overline{x}$ [M1] Equation formed $\Rightarrow \int_{0}^{r} 2x\sqrt{r^{2} - x^{2}} dx = \frac{1}{2}\pi r^{2}\overline{x}$ [A1] $\int_{0}^{r} 2x\sqrt{r^{2} - x^{2}} dx = \left[-\frac{2}{3}(r^{2} - x^{2})^{\frac{3}{2}}\right]_{0}^{r}$ [A1] Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		Moment of elemental strip = $2y \delta x \rho x$	(M1)		
Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_{0}^{r} 2xy dy = \frac{1}{2}\rho \pi r^{2}\overline{x}$ (M1) Equation formed $\Rightarrow \int_{0}^{r} 2x\sqrt{r^{2} - x^{2}} dx = \frac{1}{2}\pi r^{2}\overline{x}$ (A1) Use of $\sqrt{r^{2} - x^{2}} = y$ and $\frac{1}{2}\pi r^{2}$ (ii) $\int_{0}^{r} 2x\sqrt{r^{2} - x^{2}} dx = \left[-\frac{2}{3}(r^{2} - x^{2})^{\frac{3}{2}}\right]_{0}^{r}$ M1 Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error			(1411)		Elemental strip identified
Use of $\sum (mx) = (\sum m)\overline{x}$ Gives $\rho \int_{0}^{r} 2xy dy = \frac{1}{2}\rho \pi r^{2}\overline{x}$ (M1) Equation formed $\Rightarrow \int_{0}^{r} 2x\sqrt{r^{2} - x^{2}} dx = \frac{1}{2}\pi r^{2}\overline{x}$ (A1) Use of $\sqrt{r^{2} - x^{2}} = y$ and $\frac{1}{2}\pi r^{2}$ $\int_{0}^{r} 2x\sqrt{r^{2} - x^{2}} dx = \left[-\frac{2}{3}(r^{2} - x^{2})^{\frac{3}{2}}\right]_{0}^{r}$ Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		Total moment = $\rho \int 2xy dx$	(A1)		Integral formed
Gives $\rho \int_{0}^{r} 2xy dy = \frac{1}{2} \rho \pi r^2 \overline{x}$ (M1) $\Rightarrow \int_{0}^{r} 2x \sqrt{r^2 - x^2} dx = \frac{1}{2} \pi r^2 \overline{x}$ (A1) $\int_{0}^{r} 2x \sqrt{r^2 - x^2} dx = \left[-\frac{2}{3} (r^2 - x^2)^{\frac{3}{2}} \right]_{0}^{r}$ Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		U			
(ii)		Use of $\sum (mx) = (\sum m)\overline{x}$			
(ii)		Gives of $2m$ du $\frac{1}{2}$ or $m^2 \overline{m}$			
(ii)		Gives $\rho \int_0^2 2xy dy = \frac{1}{2} \rho \pi r x$	(M1)		Equation formed
(ii) $\int_{0}^{r} 2x\sqrt{r^{2}-x^{2}} dx = \left[-\frac{2}{3}(r^{2}-x^{2})^{\frac{3}{2}}\right]_{0}^{r}$ $= (0) - \left(-\frac{2}{3}r^{3}\right)$ M1 Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		r $\sqrt{2}$ 1 2			<u> </u>
(ii) $\int_{0}^{r} 2x\sqrt{r^{2}-x^{2}} dx = \left[-\frac{2}{3}(r^{2}-x^{2})^{\frac{3}{2}}\right]_{0}^{r}$ $= (0) - \left(-\frac{2}{3}r^{3}\right)$ M1 Attempt to integrate – inspection or substitution Integrated correctly and limits substituted – condone sign error		$\Rightarrow \int 2x\sqrt{r^2 - x^2} dx = \frac{1}{2}\pi r^2 \overline{x}$	(A1)		Use of $\sqrt{r^2 - x^2} = y$ and $\frac{1}{2}\pi r^2$
$\begin{bmatrix} \int_{0}^{2\pi} dx & \sin^{2} x & \sin^{2} x \\ = (0) - \left(-\frac{2}{3}r^{3}\right) \end{bmatrix}$ A1 Integrated correctly and limits substituted - condone sign error		0 -			
$\begin{bmatrix} \int_{0}^{2\pi} (x^{2} + x^{2}) \\ = (0) - \left(-\frac{2}{r^{3}}\right) \end{bmatrix}$ A1 $\begin{bmatrix} \text{substitution} \\ \text{Integrated correctly and limits substituted} \\ -\text{condone sign error} \end{bmatrix}$	(ii)	$r = \sqrt{\frac{3}{2}}$	M1		Attempt to integrate – inspection or
A1 Integrated correctly and limits substituted – condone sign error		$\int 2x\sqrt{r^2 - x^2} dx = \left -\frac{2}{3}(r^2 - x^2)^2 \right $			
$=(0)-(-\frac{2}{r^3})$		0 L J J0	A1		Integrated correctly and limits substituted
$= (0) - \left(-\frac{2}{3}r^3\right)$ $= \frac{2}{3}r^3$ $\therefore \frac{1}{2}\pi r^2 \overline{x} = \frac{2}{3}r^3$ $\overline{x} = \frac{4r}{3\pi}$ A1 3 Printed answer $\frac{2}{3}(1.2) = 0.8 \text{ m}$ B1					– condone sign error
$= \frac{2}{3}r^{3}$ $\therefore \frac{1}{2}\pi r^{2}\overline{x} = \frac{2}{3}r^{3}$ $\overline{x} = \frac{4r}{3\pi}$ A1 3 Printed answer $\frac{2}{3}(1.2) = 0.8 \text{ m}$ B1		$=(0)-\left(-\frac{2}{r^3}\right)$			
$= \frac{2}{3}r^{3}$ $\therefore \frac{1}{2}\pi r^{2}\overline{x} = \frac{2}{3}r^{3}$ $\overline{x} = \frac{4r}{3\pi}$ A1 3 Printed answer $(\mathbf{b})(\mathbf{i}) \frac{2}{3}(1.2) = 0.8 \text{ m}$ B1		(3)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$=\frac{2}{3}r^3$			
$\frac{1}{2}\pi r^2 \overline{x} = \frac{2}{3}r^3$ $\overline{x} = \frac{4r}{3\pi}$ A1 3 Printed answer (b)(i) $\frac{2}{3}(1.2) = 0.8 \text{ m}$ B1		1 . 2 .			
$\overline{x} = \frac{4r}{3\pi}$ A1 3 Printed answer $\frac{2}{3}(1.2) = 0.8 \text{ m}$ B1 1		$\therefore \frac{1}{2}\pi r^2 \overline{x} = \frac{2}{3}r^3$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{2}{4r}$			
(b)(i) $\frac{2}{3}(1.2) = 0.8 \text{ m}$		$x = \frac{1}{3\pi}$	A1	3	Printed answer
$\frac{(B)(1)}{3} = \frac{2}{3}(1.2) = 0.8 \text{ m}$	0.00				
	(b)(1)	$\frac{2}{3}(1.2) = 0.8 \text{ m}$	R1	1	
		3		1	
(ii) 4(0.5)	(ii)	4(0.5)			
$1.2 + \frac{1}{3\pi} = 1.41 \text{ m}$ B1		$1.2 + \frac{1.2 + \frac{1.41}{3\pi}}{3\pi} = 1.41 \text{ m}$	B1	1	

MM04 (cont				
Q	Solution	Marks	Total	Comments
6(b)(iii)	Using $(\sum m)\overline{x} = \sum (mx)$ $\left[\frac{1}{2}(1)(1.2)\right][0.8] + \left[\frac{1}{2}\pi(0.5)^2\right][1.41]$ $= \left[\frac{1}{2}(1)(1.2) + \frac{1}{2}\pi(0.5)^2\right]\overline{x}$ $0.48 + 0.553 = 0.992\overline{x}$ $\therefore \overline{x} = 1.04 \text{ m}$	M1 A1√ A1√ A1	4	Form equation – Follow through (b)(i) One term correct All terms correct CAO
	$\tan \theta = \frac{(1.2 - 1.04)}{0.5} = 0.32$	M1 A1		tan θ seen Ratio correct structure = $\frac{1.2 - \overline{x}}{0.5}$
	$\theta = 18^{\circ}$	A 1√	3	ft ratio error – correct use of tan ⁻¹ (ratio)
	Total		16	

MM04 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	Rod BC has mass m			
	Length 2 <i>l</i>			
	$I_G = \frac{1}{3}ml^2$	B1		
	(G is c of m for rod)			
	$AG = l\sqrt{5}$	B1		Or $AG^2 = 5l^2$
	$I_{BC} = \frac{1}{3}ml^2 + m(l\sqrt{5})^2$	M1		Use of parallel axis theorem
	$=\frac{16ml^2}{3}$	A1	4	
(b)	$I_{AD} = I_{AB} = \frac{4}{3} m l^2$	B1		Standard result
	$I_{DC} = I_{BC} = \frac{16ml^2}{3}$	B1		Use of part (a)
	$I_{SYSTEM} = \frac{4}{3}ml^2 + \frac{4}{3}ml^2 + \frac{16ml^2}{3} + \frac{16ml^3}{3}$	M1		4 rods or 3 particles considered
	$+3m(2l)^{2}+2m(8l^{2})+m(2l)^{2}$	A2,1,0		−1 each type of error
	$=\frac{136ml^2}{3}$	A1	6	Printed answer
(c)	Gain in KE = $\frac{1}{2}I\dot{\theta}^2$			
	$=\frac{1}{2}\left(\frac{136}{3}\right)ml^2\dot{\theta}^2$	B1		Use of $\frac{1}{2}I\dot{\theta}^2 \left[\text{or } \frac{1}{2}I\omega^2 \right]$
	Loss in PE for framework (using c. of	M1		Use of <i>mgh</i> seen
	mass) = 4mg(2l)	A1		Correct loss of PE for framework only
	For particles PE lost	111		Control loop of 1 2 for in mind worm only
	= 2mg(4l) + 3mg(4l)	M1		\sum Loss of PE for particles
	Total loss in PE = $28mgl$	A1		Correct total loss for particles
	$\frac{68}{3}ml^2\dot{\theta}^2 = 28mgl$	M1		Use of conservation of energy
	$\therefore \dot{\theta}^2 = \frac{3 \times 28 \text{mgl}}{68 \text{ml}^2} = \frac{21g}{17l}$	A1√	7	Their equation correctly rearranged for $\dot{\theta}^2$ or $\dot{\theta}$
	$\therefore \dot{\theta} = \sqrt{\frac{21g}{17l}}$			Follow through one error

Q	Solution	Marks	Total	Comments
7(c)	Alternative			
	Gain in KE = $\frac{1}{2} \left(\frac{136}{3} \right) ml^2 \dot{\theta}^2$	(B1)		
	c. of mass for system			
	$2ml + 6m(2l) = 14m\overline{y}$	(M1)		Or by symmetry
	$\overline{y} = l$	(A1)		
	Loss in PE of system = mgh	(M1)		Use of mgh
	=14mg(2l)=28mgl	(A1√)		Follow through centre of mass error
	$C \text{ of E } \frac{68}{3}ml^2\dot{\theta}^2 = 28mgl$	(M1)		
	$\dot{\theta}^2 = \frac{21g}{17l} \qquad \dot{\theta} = \sqrt{\frac{21g}{17l}}$	(A1√)		Follow through one error
	Total		17	
	TOTAL		75	