## MATHEMATICS

## MFP4

Unit Further Pure 4

Wednesday 17 June 20099.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

## Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.


## Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.


## Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.
$\mathbf{1}$ Let $\mathbf{P}=\left[\begin{array}{rrr}1 & 4 & 2 \\ -1 & 2 & 6\end{array}\right]$ and $\mathbf{Q}=\left[\begin{array}{rr}k & 1 \\ 2 & -1 \\ 3 & 1\end{array}\right]$, where $k$ is a constant.
(a) Determine the product matrix $\mathbf{P Q}$, giving its elements in terms of $k$ where appropriate.
(b) Find the value of $k$ for which $\mathbf{P Q}$ is singular.

2 (a) Write down the $3 \times 3$ matrices which represent the transformations A and B , where:
(i) A is a reflection in the plane $y=x$;
(ii) B is a rotation about the $z$-axis through the angle $\theta$, where $\theta=\frac{\pi}{2}$. ( 1 mark)
(b) (i) Find the matrix $\mathbf{R}$ which represents the composite transformation
'A followed by B'
(ii) Describe the single transformation represented by $\mathbf{R}$.

3 The plane $\Pi$ has equation $\mathbf{r}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]+\lambda\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]+\mu\left[\begin{array}{r}4 \\ -1 \\ 1\end{array}\right]$.
(a) Find an equation for $\Pi$ in the form $\mathbf{r} \cdot \mathbf{n}=d$.
(b) Show that the line with equation $\mathbf{r}=\left[\begin{array}{l}7 \\ 1 \\ 4\end{array}\right]+t\left[\begin{array}{r}10 \\ 1 \\ 5\end{array}\right]$ does not intersect $\Pi$, and explain the geometrical significance of this result.

4 (a) Show that the system of equations

$$
\begin{aligned}
& 3 x-y+3 z=11 \\
& 4 x+y-5 z=17 \\
& 5 x-4 y+14 z=16
\end{aligned}
$$

does not have a unique solution and is consistent.
(You are not required to find any solutions to this system of equations.)
(b) A transformation T of three-dimensional space maps points $(x, y, z)$ onto image points ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) such that

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{cr}
x-y+3 z-2 \\
2 x+ & 6 y-4 z+12 \\
4 x+11 y+4 z-30
\end{array}\right]
$$

Find the coordinates of the invariant point of T .

5 The points $A, B, C$ and $D$ have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{d}$ respectively, relative to the origin $O$, where

$$
\mathbf{a}=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right], \mathbf{c}=\left[\begin{array}{r}
1 \\
-1 \\
5
\end{array}\right] \text { and } \mathbf{d}=\left[\begin{array}{r}
5 \\
5 \\
11
\end{array}\right]
$$

(a) Using scalar triple products:
(i) show that $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are coplanar;
(ii) find the volume of the parallelepiped defined by $A B, A C$ and $A D$.
(b) (i) Find the direction ratios of the line $B D$.
(ii) Deduce the direction cosines of the line $B D$.

6 The plane transformation T is defined by

$$
\mathrm{T}:\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $\mathbf{M}=\left[\begin{array}{ll}-1 & 4 \\ -1 & 3\end{array}\right]$.
(a) Evaluate $\operatorname{det} \mathbf{M}$ and state the significance of this answer in relation to T .
(b) Find the single eigenvalue of $\mathbf{M}$ and a corresponding eigenvector. Describe the geometrical significance of these answers in relation to T .
(c) Show that the image of the line $y=\frac{1}{2} x+k$ under T is $y^{\prime}=\frac{1}{2} x^{\prime}+k$.
(d) Given that T is a shear, give a full geometrical description of this transformation.

7 The $2 \times 2$ matrix $\mathbf{M}$ has an eigenvalue 3, with corresponding eigenvector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, and a second eigenvalue -3 , with corresponding eigenvector $\left[\begin{array}{l}1 \\ 4\end{array}\right]$.

The diagonalised form of $\mathbf{M}$ is $\mathbf{M}=\mathbf{U} \mathbf{D} \mathbf{U}^{-1}$.
(a) (i) Write down suitable matrices $\mathbf{D}$ and $\mathbf{U}$, and find $\mathbf{U}^{-1}$.
(ii) Hence determine the matrix $\mathbf{M}$.
(b) Given that $n$ is a positive integer, use the result $\mathbf{M}^{n}=\mathbf{U} \mathbf{D}^{n} \mathbf{U}^{-1}$ to show that:
(i) when $n$ is even, $\mathbf{M}^{n}=3^{n} \mathbf{I}$;
(ii) when $n$ is odd, $\mathbf{M}^{n}=3^{n-1} \mathbf{M}$.
$\mathbf{8}$ (a) Matrix $\mathbf{M}=\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$. Without attempting to factorise, expand fully $\operatorname{det} \mathbf{M}$.
(2 marks)
(b) Matrix $\mathbf{N}=\left[\begin{array}{lll}d & e & f \\ f & d & e \\ e & f & d\end{array}\right]$. Find the product matrix $\mathbf{M N}$.
(c) Prove that the product

$$
\left(a^{3}+b^{3}+c^{3}-3 a b c\right)\left(d^{3}+e^{3}+f^{3}-3 d e f\right)
$$

can be written in the form $x^{3}+y^{3}+z^{3}-3 x y z$, stating clearly each of $x, y$ and $z$ in terms of $a, b, c, d, e$ and $f$.

## END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

## There are no questions printed on this page

