

General Certificate of Education

Mathematics 6360

MFP4 Further Pure 4

Mark Scheme

2008 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX

Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
– <i>x</i> EE	deduct x marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP4

MFP4 Q	Solution	Marks	Total	Comments
1	Attempt at char eqn $\lambda^2 - 7\lambda - 144 = 0$	M1		Any suitable method
				Ignore missing "= 0"
	Solving quadratic to find evals	M1		Any method
	$\lambda = 16 \text{ or } -9$	A 1		CAO
	$\lambda = 16 \implies -9x + 12y = 0 \implies y = \frac{3}{4}x$	M1		Either λ substituted back
	\Rightarrow evecs $\alpha \begin{bmatrix} 4 \\ 3 \end{bmatrix}$	A 1		CAO (for any non-zero α)
	$\lambda = -9 \implies 16x + 12y = 0 \implies y = -\frac{4}{3}x$			
	$\Rightarrow \text{ evecs } \beta \begin{bmatrix} 3 \\ -4 \end{bmatrix}$	A1	6	CAO (for any non-zero β)
	Total		6	
2(a)(i)	$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 2 & 1 & 2 \end{vmatrix} = \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix}$	M1		Genuine vector product attempt
=()(.)	$\begin{vmatrix} 2 & 1 & 2 \end{vmatrix} \begin{bmatrix} -3 \end{bmatrix}$	A1	2	CAO
	[1][-2]	M1		Must get a scalar answer
(ii)	$(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c} = \begin{vmatrix} 1 \\ 4 \\ 2 \end{vmatrix} \bullet \begin{vmatrix} -2 \\ t \\ 6 \end{vmatrix} = 4t - 20$	A1	2	ft
	[-3] [6]	711	2	
	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & -3 \\ -2 & t & 6 \end{vmatrix} = \begin{bmatrix} 3t + 24 \\ 0 \\ t + 8 \end{bmatrix}$	M1		Either using (a)(i) or starting again
(iii)	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \begin{bmatrix} 1 & 4 & -3 \\ -2 & t & 6 \end{bmatrix} = \begin{bmatrix} 0 \\ t + 8 \end{bmatrix}$	A1	2	CAO
(b)	$(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c} = 0 \implies t = 5$	M1A1	2	ft from (a)(ii)
(c)	$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = 0$ or $\mathbf{c} = \text{mult. of } (\mathbf{a} \times \mathbf{b})$	M1		Use of any non-zero row to find some
	$\Rightarrow t = -8$	A1	2	value of <i>t</i> CAO – allow unseen check
	<i>→ t</i> − − 8 Total	111	10	C110 unow unseen eneck
3(a)	Det $\mathbf{A} = k + 3 + 12 - 4 - 9 - k = 2$	M1	10	
		A1	2	CAO
	. 1	B1		Correct use of the determinant (any value)
(b)	$\mathbf{A}^{-1} = \frac{1}{\text{Det } \mathbf{A}} (\text{adj } \mathbf{A})$	M1		Attempt at matrix of cofactors
	$\begin{bmatrix} k-9 & 3-k & 2 \end{bmatrix}$	M1		Use of transposition and signs
	$\begin{bmatrix} 1 \\ 12 \\ k \\ k \\ k \\ 4 \\ 2 \end{bmatrix}$	A1		At least 5 entries correct
	$= \frac{1}{2} \begin{bmatrix} k-9 & 3-k & 2\\ 12-k & k-4 & -2\\ -1 & 1 & 0 \end{bmatrix}$			(even if 2 nd M1 not earned)
	1	A1	5	CAO – ft det only
	Total		7	

MFP4 (cont)

MFP4 (cont Q	Solution	Marks	Total	Comments
4(a)	Use of $\cos \theta = \frac{\text{scalar product}}{\text{product of moduli}}$	M1		Must be $\begin{bmatrix} 2\\1\\4 \end{bmatrix}$ and $\begin{bmatrix} 5\\1\\-1 \end{bmatrix}$
	Numerator = 7 Denominator = $\sqrt{21}\sqrt{27}$ $\theta = 72.9^{\circ}$	B1,B1 A1	4	"sin θ =" scores M0 at this stage Allow denominator unsimplified CAO (but A0 if candidate proceeds to find its complement)
(b)(i)	a + 4b = 7 and $a - b = 12a = 11$ and $b = -1$	B1 M1 A1	3	At least one correctly stated Solving simultaneously CAO
(ii)	$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 1 & -1 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -22 \\ 3 \end{bmatrix}$	M1		For any valid, complete method for finding a suitable direction vector , eg finding a 2^{nd} common point, eg $(2\frac{1}{2}, 0, \frac{1}{2})$ or $(1\frac{2}{3}, 3\frac{2}{3}, 0)$, and then $\mathbf{dv} = \text{difference}$
(iii)	$\mathbf{r} = \begin{bmatrix} 0 \\ 11 \\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ -22 \\ 3 \end{bmatrix}$	A1 M1	2	Must be a line equation and use their (b)(ii)
	$\begin{bmatrix} -1 \end{bmatrix}$ $\begin{bmatrix} 3 \end{bmatrix}$ or other equivalent line form eg $(\mathbf{r} - \mathbf{a}) \times \mathbf{d} = 0$	A1	2	ft their (b)(i) point, or any other correct point on the line A0 if no r = or <i>l</i> = etc
	Total		11	
5(a)	y = 0 (or "x-axis") and $y = x$	B1,B1		or $\mathbf{r} = a \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{r} = b \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	$y = 0$ is a line of invariant points since $\lambda = 1$	B1	3	Allow if proven from $(x', y') = (x, y)$ or ft from their line corresponding to $\lambda = 1$
(b)(i)	$\mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \mathbf{U} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},$	B1,B1	2	ft U from D
(ii)	$\mathbf{U}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$	B1		ft from U (provided non-singular)
	$\mathbf{M} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$	M1		Attempt
	$= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$	A1		ft first multiplication
	$= \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$	A1	4	CAO NMS \Rightarrow 0

MFP4 (cont)

Q Q	Solution	Marks	Total	Comments
(iii)	$\mathbf{D}^n = \begin{bmatrix} 1 & 0 \\ 0 & 2^n \end{bmatrix}$	B1		Noted or used
	$\mathbf{M}^n = \mathbf{U} \mathbf{D}^n \mathbf{U}^{-1}$	M1		Used; must actually do some multiplying
	$= \begin{bmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{bmatrix}$	A1	3	
	1	Al		
(()	Total	3.51.1.1	12	
6(a)	eg (2) - (1) $\Rightarrow x + 7z = -3$ (3) - 2 × (2) $\Rightarrow x + 8z = -2$	M1A1 A1		Eliminating first variable
	$(3) - 2 \times (2) \implies x + 82 = -2$ Solving 2 × 2 system	M1		
	x = -10, $y = 19$, $z = 1$	A1	5	
	1 1 -3			
(b)(i)	$\begin{vmatrix} 1 & 1 & -3 \\ 2 & 1 & 4 \\ 5 & 2 & a \end{vmatrix} = 15 - a$	B1		Determinant
. , , ,	5 2 <i>a</i>			
	Setting = to zero and solving for a	M1		Must get a numerical answer
	a = 15	A1	3	ft
	x + y - 3z = b			
(ii)	2x + y + 4z = 3			
	5x + 2y + 15z = 4			
	eg (2) – (1) $\Rightarrow x + 7z = 3 - b$ (3) – 2 × (2) $\Rightarrow x + 7z = -2$	M1A1 A1		Eliminating first variable
	Equating the two RHSs	M1		
	b=5	A1	5	CAO
				NB Eliminating $x: -y + 10z = 3 - 2b$ -3y + 30z = 4 - 5b -y + 10z = -7
				NB Eliminating z: $10x + 7y = 4b + 9$ 10x + 7y = 5b + 4 10x + 7y = 29
	Total		13	·
	Alternate Schemes			
6(a)	Cramer's Rule			
	$\Delta = \begin{vmatrix} 1 & 1 & -3 \\ 2 & 1 & 4 \\ 5 & 2 & 16 \end{vmatrix}, \ \Delta_x = \begin{vmatrix} 6 & 1 & -3 \\ 3 & 1 & 4 \\ 4 & 2 & 16 \end{vmatrix},$			
	$\Delta = \begin{bmatrix} 2 & 1 & 4 \end{bmatrix}, \ \Delta_x = \begin{bmatrix} 3 & 1 & 4 \end{bmatrix},$			
		M1		Attempt at any two
	1 6 -3 1 1 6	M1		Attempt at any two
	$\Delta_{y} = \begin{vmatrix} 1 & 6 & -3 \\ 2 & 3 & 4 \\ 5 & 4 & 16 \end{vmatrix}, \ \Delta_{z} = \begin{vmatrix} 1 & 1 & 6 \\ 2 & 1 & 3 \\ 5 & 2 & 4 \end{vmatrix}$			
	$ 5 \ 4 \ 16 $ $ 5 \ 2 \ 4 $ = -1, 10, -19 and -1 respectively	A1		Any one correct
	$x = \frac{\Delta_x}{\Lambda}, \ y = \frac{\Delta_y}{\Lambda}, \ z = \frac{\Delta_z}{\Lambda}$	M1		At least one attempted numerically
	x = -10, y = 19, z = 1	A1 A1	(5)	Any 2 correct ft All 3 correct CAO
		111	(3)	THE S COLLECT CASE

MFP4 (cont)

Q	Solution	Marks	Total	Comments
_	Inverse matrix method			
	$C^{-1} = \frac{1}{-1} \begin{bmatrix} 8 & -22 & 7 \\ -12 & 31 & -10 \\ -1 & 3 & -1 \end{bmatrix}$	M1 A1		M0 if no inverse matrix is given
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = C^{-1} \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -10 \\ 19 \\ 1 \end{bmatrix}$	M1 A1 A1	(5)	Any 2 correct ft All 3 correct CAO
6(all)	$ \begin{bmatrix} 1 & 1 & -3 & b \\ 2 & 1 & 4 & 3 \\ 5 & 2 & a & 4 \end{bmatrix} $			
				$R_{2}' = R_{2} - 2R_{1}$ $R_{3}' = R_{3} - 5R_{1}$
	$\rightarrow \begin{bmatrix} 1 & 1 & -3 & b \\ 0 & 1 & -10 & 2b - 3 \\ 0 & 0 & a - 15 & b - 5 \end{bmatrix}$		(4)	$R_3' = R_3 + 3R_2$
	(b)(i) For non-unique solutions, $a = 15$		(2)	
	(ii) For consistency, $4-5b=3(3-2b) \implies b=5$		(2)	
	(a) When $a = 16, b = 6$ $ \begin{bmatrix} 1 & 1 & -3 & & 6 \\ 0 & 1 & -10 & & 9 \\ 0 & 0 & 1 & & 1 \end{bmatrix} $ $\Rightarrow z = 1, y = 19, x = -10$		(5)	
() ()	$\det \mathbf{W} = 0$ Transformed shapes have zero volume	B1 B1	2	Or equivalent statement ft volume statements
	Char eqn is $\lambda^3 - 4\lambda^2 + 4\lambda = 0$	M1A3		One A mark for each coefficient (not the λ^3)
	Solving the cubic eqn $\lambda = 0, 2, (2)$	M1 A1	6	

QSolutionMarksTotalComments7(a)(ii)Alternative: $ \begin{vmatrix} $	
$Det (\mathbf{W} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & -1 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1 - \lambda \end{vmatrix}$ $= \begin{vmatrix} 2 - \lambda & 0 & 2 - \lambda \\ 2 & -\lambda & 2 \\ -1 & 1 & 1 - \lambda \end{vmatrix}$ $= (2 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1 - \lambda \end{vmatrix}$ $= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ $A1A1$ $= (2 - \lambda)^{2} (-\lambda)$	
$=\begin{vmatrix} 2-\lambda & 0 & 2-\lambda \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2-\lambda \end{vmatrix}$ $= (2-\lambda)^2\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2-\lambda)^2(-\lambda)$ M1 Use of R/C ops. $R_1' \to R_1 + R_3$ Factor of $(2-\lambda)$ correctly extract $C_1' \to C_3 - C_1$ $= (2-\lambda)^2(-\lambda)$ A1A1 $= (2-\lambda)^2(-\lambda)$ M1 Complete factorisation attempt	
$=\begin{vmatrix} 2-\lambda & 0 & 2-\lambda \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2-\lambda \end{vmatrix}$ $= (2-\lambda)^2\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2-\lambda)^2(-\lambda)$ M1 Use of R/C ops. $R_1' \to R_1 + R_3$ Factor of $(2-\lambda)$ correctly extract $C_1' \to C_3 - C_1$ $= (2-\lambda)^2(-\lambda)$ A1A1 $= (2-\lambda)^2(-\lambda)$ M1 Complete factorisation attempt	
$=\begin{vmatrix} 2-\lambda & 0 & 2-\lambda \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2-\lambda \end{vmatrix}$ $= (2-\lambda)^2\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2-\lambda)^2(-\lambda)$ M1 Use of R/C ops. $R_1' \to R_1 + R_3$ Factor of $(2-\lambda)$ correctly extract $C_1' \to C_3 - C_1$ $= (2-\lambda)^2(-\lambda)$ A1A1 $= (2-\lambda)^2(-\lambda)$ M1 Complete factorisation attempt	
$=\begin{vmatrix} 2-\lambda & 0 & 2-\lambda \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1-\lambda \end{vmatrix}$ $= (2-\lambda)\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2-\lambda \end{vmatrix}$ $= (2-\lambda)^2\begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2-\lambda)^2(-\lambda)$ M1 Use of R/C ops. $R_1' \to R_1 + R_3$ Factor of $(2-\lambda)$ correctly extract $C_1' \to C_3 - C_1$ $= (2-\lambda)^2(-\lambda)$ A1A1 $= (2-\lambda)^2(-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1 - \lambda \end{vmatrix}$ $= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1 A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Factor of $(2 - \lambda)$ correctly extraction attempt.	
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1 - \lambda \end{vmatrix}$ $= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1 A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Factor of $(2 - \lambda)$ correctly extraction attempt.	
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1 - \lambda \end{vmatrix}$ $= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1 A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Factor of $(2 - \lambda)$ correctly extraction attempt.	
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 1 \\ 2 & -\lambda & 2 \\ -1 & 1 & 1 - \lambda \end{vmatrix}$ $= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1 A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Factor of $(2 - \lambda)$ correctly extraction attempt.	
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	ted
$= (2 - \lambda) \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 2 - \lambda \end{vmatrix}$ $= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda)^{2} \begin{vmatrix} 1 & 0 & 0 \\ 2 & -\lambda & 0 \\ -1 & 1 & 1 \end{vmatrix}$ $= (2 - \lambda)^{2} (-\lambda)$ A1A1 $= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
$= (2 - \lambda)^{2} (-\lambda)$ M1 Complete factorisation attempt	
1 giving eigenvalues trancizer that it to it	
(b)(i) $x - y + z = 0$ B1	
$\begin{bmatrix} 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 3a-b+c \end{bmatrix}$	
(ii) $\begin{vmatrix} 2 & 0 & 2 \end{vmatrix} \begin{vmatrix} b \end{vmatrix} = \begin{vmatrix} 2a+2c \end{vmatrix}$ M1A1	
(ii) $ \begin{bmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 3a - b + c \\ 2a + 2c \\ -a + b + c \end{bmatrix} $	
x'-y'+z'=3a-b+c-2a-2c-a+b+c M1	
$= 0 \Rightarrow P' \text{ in } H \text{ also}$ A1 4 Shown carefully	
Total 13	
8 Expanding fully: $\Delta = x^3 + y^3 + z^3 - 3xyz$ B1	
Using row/column operations: eg $R_1' = R_1 + (R_2 + R_3)$ M1	
$\Rightarrow \Delta = (x + y + z) \begin{vmatrix} 1 & 1 & 1 \\ z & x & y \\ y & z & x \end{vmatrix}$ A1 With conclusion that $(x + y + z)$ factor of the required expression $k = 3$	when
$\begin{vmatrix} y & z & x \end{vmatrix}$ $\begin{vmatrix} k = 3 \end{vmatrix}$	
NB Any line of argument that leads	
correctly from $(x + y + z)$ f(x, y, z) to	
$x^3 + y^3 + z^3 - 3xyz$ scores full marks	
Total 3	
TOTAL 75	