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Answer all questions.

1 The function yðxÞ satisfies the differential equation

dy

dx
¼ fðx, yÞ

where fðx, yÞ ¼ x2 � y2

and yð2Þ ¼ 1

(a) Use the Euler formula

yrþ1 ¼ yr þ hfðxr, yrÞ

with h ¼ 0:1 , to obtain an approximation to yð2:1Þ . (3 marks)

(b) Use the formula

yrþ1 ¼ yr�1 þ 2hfðxr, yrÞ

with your answer to part (a), to obtain an approximation to yð2:2Þ . (3 marks)



3

P97604/Jan08/MFP3

2 The diagram shows a sketch of part of the curve C whose polar equation is r ¼ 1þ tan y .
The point O is the pole.

The points P and Q on the curve are given by y ¼ 0 and y ¼ p
3

respectively.

(a) Show that the area of the region bounded by the curve C and the lines OP and OQ is

1
2

ffiffiffi
3

p
þ ln 2 (6 marks)

(b) Hence find the area of the shaded region bounded by the line PQ and the arc PQ of C.

(3 marks)

3 (a) Find the general solution of the differential equation

d2y

dx2
þ 4

dy

dx
þ 5y ¼ 5 (6 marks)

(b) Hence express y in terms of x, given that y ¼ 2 and
dy

dx
¼ 3 when x ¼ 0 . (4 marks)

4 (a) Explain why

ð1
1

xe�3x dx is an improper integral. (1 mark)

(b) Find

ð
xe�3x dx . (3 marks)

(c) Hence evaluate

ð1
1

xe�3x dx , showing the limiting process used. (3 marks)
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5 By using an integrating factor, find the solution of the differential equation

dy

dx
þ 4x

x2 þ 1
y ¼ x

given that y ¼ 1 when x ¼ 0 . Give your answer in the form y ¼ fðxÞ . (9 marks)

6 A curve C has polar equation

r2 sin 2y ¼ 8

(a) Find the cartesian equation of C in the form y ¼ fðxÞ . (3 marks)

(b) Sketch the curve C. (1 mark)

(c) The line with polar equation r ¼ 2 sec y intersects C at the point A. Find the

polar coordinates of A. (4 marks)

7 (a) (i) Write down the expansion of lnð1þ 2xÞ in ascending powers of x up to and

including the term in x3 . (2 marks)

(ii) State the range of values of x for which this expansion is valid. (1 mark)

(b) (i) Given that y ¼ ln cos x , find
dy

dx
,
d2y

dx2
and

d3y

dx3
. (4 marks)

(ii) Find the value of
d4y

dx4
when x ¼ 0 . (3 marks)

(iii) Hence, by using Maclaurin’s theorem, show that the first two non-zero terms in

the expansion, in ascending powers of x, of ln cos x are

� x2

2
� x4

12
(2 marks)

(c) Find

lim
x! 0

x lnð1þ 2xÞ
x2 � ln cos x

� �
(3 marks)
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8 (a) Given that x ¼ et and that y is a function of x, show that:

(i) x
dy

dx
¼ dy

dt
; (3 marks)

(ii) x2
d2y

dx2
¼ d2y

dt2
� dy

dt
. (3 marks)

(b) Hence find the general solution of the differential equation

x2
d2y

dx2
� 6x

dy

dx
þ 6y ¼ 0 (5 marks)

END OF QUESTIONS
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