General Certificate of Education January 2006 Advanced Level Examination

MATHEMATICS Unit Further Pure 3

MFP3

Friday 27 January 2006 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the **blue** AQA booklet of formulae and statistical tables

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP3.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P80786/Jan06/MFP3 6/6/6/ MFP3

Answer all questions.

- 1 (a) Find the roots of the equation $m^2 + 2m + 2 = 0$ in the form a + ib. (2 marks)
 - (b) (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 4x \tag{6 marks}$$

- (ii) Hence express y in terms of x, given that y = 1 and $\frac{dy}{dx} = 2$ when x = 0.

 (4 marks)
- 2 (a) Find $\int_0^a xe^{-2x} dx$, where a > 0. (5 marks)
 - (b) Write down the value of $\lim_{a\to\infty} a^k e^{-2a}$, where k is a positive constant. (1 mark)
 - (c) Hence find $\int_0^\infty x e^{-2x} dx$. (2 marks)
- 3 (a) Show that $y = x^3 x$ is a particular integral of the differential equation

$$\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 5x^2 - 1$$
 (3 marks)

(b) By differentiating $(x^2 - 1)y = c$ implicitly, where y is a function of x and c is a constant, show that $y = \frac{c}{x^2 - 1}$ is a solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2xy}{x^2 - 1} = 0 \tag{3 marks}$$

(c) Hence find the general solution of

$$\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 5x^2 - 1$$
 (2 marks)

4 (a) Use the series expansion

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$$

to write down the first four terms in the expansion, in ascending powers of x, of ln(1-x). (1 mark)

(b) The function f is defined by

$$f(x) = e^{\sin x}$$

Use Maclaurin's theorem to show that when f(x) is expanded in ascending powers of x:

(i) the first three terms are

$$1 + x + \frac{1}{2}x^2 \tag{6 marks}$$

- (ii) the coefficient of x^3 is zero. (3 marks)
- (c) Find

$$\lim_{x \to 0} \frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x}$$
 (4 marks)

Turn over for the next question

5 (a) The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x,y) = x \ln x + \frac{y}{x}$$

and

$$y(1) = 1$$

(i) Use the Euler formula

$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(1.1).

(3 marks)

(ii) Use the formula

$$y_{r+1} = y_{r-1} + 2h f(x_r, y_r)$$

with your answer to part (a)(i) to obtain an approximation to y(1.2), giving your answer to three decimal places. (4 marks)

(b) (i) Show that $\frac{1}{x}$ is an integrating factor for the first-order differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{x}y = x \ln x \tag{3 marks}$$

- (ii) Solve this differential equation, given that y = 1 when x = 1. (6 marks)
- (iii) Calculate the value of y when x = 1.2, giving your answer to three decimal places. (1 mark)

- 6 (a) A circle C_1 has cartesian equation $x^2 + (y 6)^2 = 36$. Show that the polar equation of C_1 is $r = 12 \sin \theta$.
 - (b) A curve C_2 with polar equation $r = 2\sin\theta + 5$, $0 \le \theta \le 2\pi$ is shown in the diagram.

Calculate the area bounded by C_2 .

(6 marks)

(c) The circle C_1 intersects the curve C_2 at the points P and Q. Find, in surd form, the area of the quadrilateral OPMQ, where M is the centre of the circle and O is the pole.

(6 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page