

General Certificate of Education

Mathematics 6360

MFP3
Further Pure 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^0]
Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\text { M } & \text { mark is for method } & \\ \hline \mathrm{m} \text { or } \mathrm{dM} & \text { mark is dependent on one or more M marks and is for method } \\ \hline \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } \mathrm{m} \text { marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 6 \& \begin{tabular}{l}
PI \\
PI \\
Dep on previous two Ms and numerical values for \(k\) 's \\
Must be 3.1635
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline 2(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { PI: } \begin{array}{l}
y_{P I}=a+b x+c \sin x+d \cos x \\
\begin{array}{r}
\prime \\
b+c \cos x-d \sin x-3 a-3 b x-3 c \sin x \\
b+c \cos x-d \sin x
\end{array} \\
\qquad \quad-3 d \cos x=10 \sin x-3 x
\end{array} \\
\& \begin{array}{l}
b-3 a=0 ;-3 b=-3 ; c-3 d=0 ;-d-3 c=10 \\
a=\frac{1}{3} ; b=1 ; c=-3 ; d=-1
\end{array} \\
\& y_{P I}=\frac{1}{3}+x-3 \sin x-\cos x
\end{aligned}
\] \\
Aux. eqn. \(m-3=0\)
\[
\begin{aligned}
\& \left(y_{C F}=\right) A \mathrm{e}^{3 x} \\
\& \left(y_{G S}=\right) A \mathrm{e}^{3 x}+\frac{1}{3}+x-3 \sin x-\cos x
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A2,1 \\
M1 \\
A1 \\
B1F
\end{tabular} \& 3 \& \begin{tabular}{l}
Substituting into DE \\
Equating coefficients (at least 2 eqns) A1 for any two correct \\
Altn. \(\int y^{-1} \mathrm{~d} y=\int 3 \mathrm{~d} x \quad\) OE (M1) \(A \mathrm{e}^{3 x}\) OE \\
(c's CF + c's PI) with 1 arbitrary constant
\end{tabular} \\
\hline \& Total \& \& 7 \& \\
\hline \begin{tabular}{l}
3(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \begin{array}{l}
x^{2}+y^{2}=1-2 y+y^{2} \Rightarrow x^{2}+y^{2}=(1-y)^{2} \\
x^{2}+y^{2}=r^{2} \\
y=r \sin \theta \\
x^{2}=1-2 y \text { so } x^{2}+y^{2}=(1-y)^{2} \\
\quad \Rightarrow r^{2}=(1-r \sin \theta)^{2} \\
r=1-r \sin \theta \text { or } r=-(1-r \sin \theta) \\
r(1+\sin \theta)=1 \text { or } r(1-\sin \theta)=-1 \\
r>0 \text { so } r=\frac{1}{1+\sin \theta}
\end{array} \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 1

5 \& | AG |
| :--- |
| Or $x=r \cos \theta$ |
| OE eg $r^{2} \cos ^{2} \theta=1-2 r \sin \theta$ PI by the next line |
| Either |
| CSO |

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

MFP3 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & u=\frac{\mathrm{d} y}{\mathrm{~d} x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \\ & x \frac{\mathrm{~d} u}{\mathrm{~d} x}-u=3 x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}-\frac{1}{x} u=3 x \end{aligned}$	M1 A1	2	AG Substitution into LHS of DE and completion
(b)	IF is $\exp \left(\int-\frac{1}{x} \mathrm{~d} x\right)$	M1		and with integration attempted
	$=\mathrm{e}^{-\ln x}$	A1		
	$=x^{-1} \text { or } \frac{1}{x}$	A1		or multiple of x^{-1}
	$\frac{\mathrm{d}}{\mathrm{~d} x}\left[u x^{-1}\right]=3$	M1		LHS as differential of $u \times \mathrm{IF}$. PI
	$\Rightarrow u x^{-1}=3 x+A$	m1		Must have an arbitrary constant (Dep. on previous M1 only)
	$u=3 x^{2}+A x$	A1	6	
(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+A x$	M1		Replaces u by $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and attempts to integrate
	$y=x^{3}+\frac{A x^{2}}{2}+B$	A1F	2	ft on cand's u but solution must have two arbitrary constants
	Total		10	
5(a)	$\int x^{3} \ln x \mathrm{~d} x=\frac{x^{4}}{4} \ln x-\int \frac{x^{4}}{4}\left(\frac{1}{x}\right) \mathrm{d} x$	M1		$\ldots=k x^{4} \ln x \pm \int \mathrm{f}(x)$, with $\mathrm{f}(x)$ not involving the 'original' $\ln x$
		A1		
	$\ldots \ldots=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+c$	A1	3	Condone absence of ' $+c$ '
(b)	Integrand is not defined at $x=0$	E1	1	OE
(c)	$\begin{aligned} & \int_{0}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x=\left\{\lim _{a \rightarrow 0} \int_{a}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x\right\} \\ & =\frac{3 \mathrm{e}^{4}}{16}-\lim _{a \rightarrow 0}\left[\frac{a^{4}}{4} \ln a-\frac{a^{4}}{16}\right] \end{aligned}$	M1		$\mathrm{F}(\mathrm{e})-\mathrm{F}(a)$
	But $\lim _{a \rightarrow 0} a^{4} \ln a=0$	B1		Accept a general form eg $\lim _{x \rightarrow 0} x^{k} \ln x=0$
	So $\int_{0}^{\mathrm{e}} x^{3} \ln x \mathrm{~d} x$ exists and $=\frac{3 \mathrm{e}^{4}}{16}$	A1	3	CSO
	Total		7	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Aux eqn: $m^{2}-2 m-3=0$	M1		PI
	CF ($\left.y_{C}=\right) A \mathrm{e}^{3 x}+B \mathrm{e}^{-x}$	M1		
	Try ($\left.y_{P I}=\right) a \mathrm{e}^{-2 x}(+b)$	M1		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 a \mathrm{e}^{-2 x}$	A1		
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 a \mathrm{e}^{-2 x}$	A1		
	Substitute into DE gives $4 a \mathrm{e}^{-2 x}+4 a \mathrm{e}^{-2 x}-3 a \mathrm{e}^{-2 x}-3 b=10 \mathrm{e}^{-2 x}-9$	M1		
	$\begin{aligned} \Rightarrow a & =2 \\ b & =3 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$		
	$\left(y_{G S}=\right) A \mathrm{e}^{3 x}+B \mathrm{e}^{-x}+2 \mathrm{e}^{-2 x}+3$	B1F	10	(c's CF+c's PI) with 2 arbitrary constants
(b)	$x=0, y=7 \Rightarrow 7=A+B+2+3$	B1F		Only ft if exponentials in GS and two arbitrary constants remain
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 A \mathrm{e}^{3 x}-B \mathrm{e}^{-x}-4 \mathrm{e}^{-2 x}$			
	$\text { As } x \rightarrow \infty, \mathrm{e}^{-k x} \rightarrow 0, \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow 0 \text { so } A=0$	B1		
	When $A=0,5=0+B+3 \Rightarrow B=2$ $y=2 \mathrm{e}^{-x}+2 \mathrm{e}^{-2 x}+3$	$\begin{gathered} \text { B1F } \\ \text { A1 } \end{gathered}$	4	$\text { Must be using ' } A \text { ' }=0$ CSO
	Total		14	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\sin 2 x \approx 2 x-\frac{(2 x)^{3}}{3!}+. .=2 x-\frac{4}{3} x^{3}+. .$	B1	1	
(b)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(3+\mathrm{e}^{x}\right)^{-\frac{1}{2}}\left(\mathrm{e}^{x}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Chain rule
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2} \mathrm{e}^{x}\left(3+\mathrm{e}^{x}\right)^{-\frac{1}{2}}-\frac{1}{4}\left(3+\mathrm{e}^{x}\right)^{-\frac{3}{2}}\left(\mathrm{e}^{2 x}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Product rule OE OE
	$y^{\prime}(0)=\frac{1}{4} ; y^{\prime \prime}(0)=\frac{1}{4}-\frac{1}{32}=\frac{7}{32}$	A1	5	CSO
(ii)	$\begin{aligned} & y(0)=2 ; y^{\prime}(0)=\frac{1}{4} ; y^{\prime \prime}(0)=\frac{1}{4}-\frac{1}{32}=\frac{7}{32} \\ & \text { McC. Thm: } y(0)+x y^{\prime}(0)+\frac{x^{2}}{2} y^{\prime \prime}(0) \\ & \sqrt{3+\mathrm{e}^{x}} \approx 2+\frac{1}{4} x+\frac{7}{64} x^{2} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	CSO; AG
(c)	$\begin{aligned} & {\left[\frac{\sqrt{3+\mathrm{e}^{x}}-2}{\sin 2 x}\right]=\left[\frac{2+\frac{1}{4} x+\frac{7}{64} x^{2}-2}{2 x-\frac{4}{3} x^{3}}\right]} \\ & =\left[\frac{\frac{1}{4}+\frac{7}{64} x+\ldots}{2-\frac{4}{3} x^{2}+. .}\right] \end{aligned}$	M1 m1		Dividing numerator and denominator by x to get constant term in each
	$\lim _{x \rightarrow 0}\left[\frac{\sqrt{3+\mathrm{e}^{x}}-2}{\sin 2 x}\right]=\frac{\frac{1}{4}}{2}=\frac{1}{8}$	A1F	3	Ft on cand's answer to (a) provided of the form $a x+b x^{3}$
	Total		11	

MFP3 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\theta=0, r=5+2 \cos 0=7\{A$ lies on $C\}$	B1		
(b)	$\theta=\pi, r=5+2 \cos \pi=3\{B$ lies on $C\}$	B1	2	
		B1		Closed single loop curve, with (indication of) symmetry
		B1	2	Critical values, 3,5,7 indicated
(c)	$\text { Area }=\frac{1}{2} \int(5+2 \cos \theta)^{2} \mathrm{~d} \theta$	M1		Use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$=\frac{1}{2} \int_{-\pi}^{\pi}\left(25+20 \cos \theta+4 \cos ^{2} \theta\right) \mathrm{d} \theta$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		OE for correct expansion of $(5+2 \cos \theta)^{2}$ For correct limits
	$=\frac{1}{2} \int_{-\pi}^{\pi}(25+20 \cos \theta+2(\cos 2 \theta+1)) \mathrm{d} \theta$	M1		Attempt to write $\cos ^{2} \theta$ in terms of $\cos 2 \theta$
	$=\frac{1}{2}[27 \theta+20 \sin \theta+\sin 2 \theta]_{-\pi}^{\pi}$	A1F A1	6	Correct integration ft wrong non-zero coefficients in $a+b \cos \theta+c \cos 2 \theta$ CSO
(d)	Triangle $O B Q$ with $O B=3$ and angle $B O Q=\alpha$	B1		PI
	$O Q=5+2 \cos (-\pi+\alpha)$	M1		OE
	Area of triangle $O Q B=\frac{1}{2} O B \times O Q \sin \alpha$	m1		Dep. on correct method to find $O Q$
	$=\frac{3}{2}(5-2 \cos \alpha) \sin \alpha$	A1	4	CSO
	Total		14	
	TOTAL		75	

[^0]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334) Registered address: AQA, Devas Street, Manchester M15 6EX

