

General Certificate of Education (A-level) January 2011

Mathematics

MFP3

(Specification 6360)

Further Pure 3

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP3

Q	Solution	Marks	Total	Comments
1	$k_1 = 0.1 \times (3 + \sqrt{4})$ (=0.5)	M1		
	$k_2 = 0.1 \text{ f} (3.1, 4.5)$	M1		
	$k_2 = 0.1 \times (3.1 + \sqrt{4.5}) = 0.522132$	A1		PI accept 3dp or better
	$y(3.1) = y(3) + \frac{1}{2}[k_1 + k_2]$			
	$= 4 + 0.5 \times 1.022132$	m1		Dep on previous two Ms and numerical values for <i>k</i> 's
	y(3.1) = 4.511	A1	5	Must be 4.511
	Total		5	
2(a)	$p\cos x - q\sin x + 5p\sin x + 5q\cos x = 13\cos x$	M1		Differentiation and subst. into DE
	p + 5q = 13; $5p - q = 0$	m1		Equating coeffs.
	$p = \frac{1}{2}; \qquad q = \frac{5}{2}$	A1	3	OE Need both
(b)	Aux. eqn. $m + 5 = 0$	M1		PI. Or solving $y'(x)+5y=0$ as far as $y=$
(~)	$(y_{CF} =) A e^{-5x}$	A1		OE
	$(y_{GS} =) Ae^{-5x} + \frac{1}{2}\sin x + \frac{5}{2}\cos x$	B1F	3	c's CF + c's PI with exactly one arbitrary constant OE
	Total		6	
3(a)	$r + r\cos\theta = 2$	M1		
	r + x = 2	B1		$r\cos\theta = x$ stated or used
	r = 2 - x $x^{2} + y^{2} = (2 - x)^{2}$	A1		222
	$x + y = (2 - x)$ $y^2 = 4 - 4x$	M1 A1	5	$r^2 = x^2 + y^2$ used Must be in the form $y^2 = f(x)$ but accept
	y = 4 4x	7 1 1	3	ACF for $f(x)$.
(b)	Equation of line: $r\cos\theta = \frac{3}{4} \Rightarrow x = \frac{3}{4}$	3.61		
	Equation of fine. $7\cos\theta = \frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$	M1 A1		Use of $r\cos\theta = x$
	(2)	Al		4x=3 OE
	$y^2 = 4 - 4\left(\frac{3}{4}\right) = 1 \Rightarrow y = \pm 1; \text{ [Pts } \left(\frac{3}{4}, \pm 1\right)]$	M1		
	Distance between pts (0.75, 1) and (0.75,-1)	A1	4	
	is 2			
	Altn:			
	At pts of intersection, $r = \frac{5}{4}$ and $\cos \theta = \frac{3}{5}$ OE	(M1A1)		(M1 elimination of either r or θ) (For A condone slight prem approx.)
	Distance $PQ = 2r\sin\theta$	(M1)		Or use of cosine rule or Pythag.
	$=2\times\frac{5}{4}\times\frac{4}{5}=2$	(A1)		Must be from exact values.
	m . 1		0	
	Total		9	

MFP3(cont)				
Q	Solution	Marks	Total	Comments
4	IF is $e^{\int -\frac{2}{x} dx}$	M1		Award even if negative sign missing
	$= e^{-2\ln(x) (+c)} = e^{\ln(x)^{-2} (+c)}$	A1		OE Condone missing <i>c</i>
	$=(k)x^{-2}$	A1F		Ft earlier sign error
	$x^{-2}\frac{dy}{dx} - 2x^{-3}y = 2xe^{2x}$			
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^{-2} y \right) = 2x \mathrm{e}^{2x}$	M1		LHS as $d/dx(y \times IF)$ PI
	$x^{-2}y = \int 2x e^{2x} dx$			
	$= \int x \ d(e^{2x}) = x e^{2x} - \int e^{2x} dx$	M1 A1		Integration by parts in correct dirn
	$x^{-2}y = xe^{2x} - \frac{1}{2}e^{2x} \ (+c)$	A1		ACF
	When $x = 2$, $y = e^4$ so $\frac{1}{4}e^4 = 2e^4 - \frac{1}{2}e^4 + c$	m1		Boundary condition used to find <i>c</i> after integration.
	$\begin{vmatrix} 4 & 2 \\ c = -\frac{5}{4}e^4 \end{vmatrix}$			to find c after integration.
	$y = x^3 e^{2x} - \frac{1}{2} x^2 e^{2x} - \frac{5}{4} x^2 e^4$	A1	9	Must be in the form $y = f(x)$
	Total		9	

MFP3(cont)		1		
Q	Solution	Marks	Total	Comments
5(a)	$\frac{12x+8-12x-3}{(4x+1)(3x+2)} = \frac{5}{(4x+1)(3x+2)}$	B1	1	Accept $C = 5$
(b)	$\int \frac{10}{(4x+1)(3x+2)} dx = 2\int \left(\frac{4}{4x+1} - \frac{3}{3x+2}\right) dx$	M1		
	$= 2[\ln(4x+1) - \ln(3x+2)] (+c)$	A 1		OE
	$I = \lim_{a \to \infty} \int_{1}^{a} \left(\frac{10}{(4x+1)(3x+2)} \right) dx$	M1		∞ replaced by a and $\lim_{a\to\infty}$ (OE)
	$=2 \lim_{a \to \infty} \left[\ln(4a+1) - \ln(3a+2) \right] - (\ln 5 - \ln 5)$			
	$=2\lim_{a\to\infty}\left[\ln\left(\frac{4a+1}{3a+2}\right)\right]=2\lim_{a\to\infty}\left[\ln\left(\frac{4+\frac{1}{a}}{3+\frac{2}{a}}\right)\right]$	m1,m1		Limiting process shown. Dependent on the previous M1M1
	$= 2\ln\frac{4}{3} = \ln\frac{16}{9}$	A1	6	CSO
	Total		7	

MFP3(cont)				
Q	Solution	Marks	Total	Comments
6	Area = $\frac{1}{2} \int (2\sin 2\theta \sqrt{\cos \theta})^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\left(4\cos\theta\sin^{2}2\theta\right)\mathrm{d}\theta$	B1		$r^2 = 4\cos\theta\sin^22\theta \text{ or better}$
		B1		Correct limits
	$=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\left(16\sin^{2}\theta\cos^{3}\theta\right)\ d\theta$	M1		$\sin^2 2\theta = k \sin^2 \theta \cos^2 \theta (k > 0)$
	$= \int_0^{\frac{\pi}{2}} \left(8\sin^2\theta (1-\sin^2\theta) \right) \mathrm{d}\sin\theta$	m1		Substitution or another valid method to integrate $\sin^2 \theta \cos^3 \theta$
	$= \left[\frac{8\sin^3\theta}{3} - \frac{8\sin^5\theta}{5}\right]_0^{\frac{\pi}{2}}$	A1F		Correct integration of $p \sin^2 \theta \cos^3 \theta$
	$= \left(\frac{8}{3} - \frac{8}{5}\right) - 0 = \frac{16}{15}$	A1	7	CSO AG
	Alternatives for the last four marks			
	Area = $\int_0^{\frac{\pi}{2}} \left(\cos \theta - \cos 4\theta \cos \theta \right) d\theta$	(M1)		$2\cos\theta\sin^2 2\theta = \lambda\cos\theta + \mu\cos 4\theta\cos\theta$ $(\lambda, \mu \neq 0)$
	$\int (\cos 4\theta \cos \theta) d\theta$	(m1)		Integration by parts twice or use of $\cos 4\theta \cos \theta = \frac{1}{2}(\cos 5\theta + \cos 3\theta)$
	$= -\frac{1}{15}(\cos 4\theta \sin \theta - 4\sin 4\theta \cos \theta)$	(A1F)		Correct integration of $p\cos 4\theta\cos\theta$
	Area = $(1-0) + \frac{1}{15}[(1-0)-(0)] = \frac{16}{15}$	(A1)		$[\text{eg } p \left[\frac{1}{10} \sin 5\theta + \frac{1}{6} \sin 3\theta \right]]$ $CSO \ AG$ $\{1 - \frac{1}{10} + \frac{1}{6} = \frac{16}{15}\}$
	Total		7	

MFP3(cont	Solution	Marks	Total	Comments
7(a)(i)	$\cos x + \sin x = 1 + x - \frac{1}{2}x^2 - \frac{1}{6}x^3$	B1	1	Accept coeffs unsimplified, even 3! for 6.
(ii)	$\ln(1+3x) = 3x - \frac{1}{2}(3x)^2 + \frac{1}{3}(3x)^3 = 3x - \frac{9}{2}x^2 + 9x^3$	B1	1	Accept coeffs unsimplified
(b)(i)	$y = e^{\tan x}$, $\frac{dy}{dx} = \sec^2 x e^{\tan x}$	M1 A1		Chain rule ACF eg $y \sec^2 x$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\sec^2 x \tan x \mathrm{e}^{\tan x} + \sec^4 x \mathrm{e}^{\tan x}$	m1 A1		Product rule OE ACF
	$= \sec^2 x e^{\tan x} (2 \tan x + \sec^2 x)$ $= \frac{dy}{dx} (2 \tan x + 1 + \tan^2 x)$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = (1 + \tan x)^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	A1	5	AG Completion; CSO any valid method.
(ii)	$\frac{d^{3}y}{dx^{3}} = 2(1 + \tan x)\sec^{2}x\frac{dy}{dx} + (1 + \tan x)^{2} \frac{d^{2}y}{dx^{2}}$	M1		
	When $x = 0$, $\frac{d^3 y}{dx^3} = 2(1)(1)(1)+(1)(1) = 3$	A1	2	CSO
(iii)	y(0) = 1; $y'(0) = 1$; $y''(0) = 1$; $y'''(0) = 3$; $y(x) \approx y(0) + x y'(0) + \frac{1}{2}x^2 y''(0) + \frac{1}{3!}x^3 y'''(0)$	M1		
	$e^{\tan x} \approx 1 + x + \frac{1}{2}x^2 + \frac{1}{2}x^3$	A1	2	CSO AG
(c)	$\lim_{x \to 0} \left[\frac{e^{\tan x} - (\cos x + \sin x)}{x \ln(1 + 3x)} \right]$			
	$= \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + \frac{x^3}{2} - 1 - x + \frac{x^2}{2} + \frac{x^3}{6}}{x \left(3x - \frac{9}{2}x^2 + \dots\right)}$	M1		Using series expns.
	$= \lim_{x \to 0} \left[\frac{x^2 + \frac{2}{3}x^3 + \dots}{3x^2 - \frac{9}{2}x^3 \dots} \right] = \lim_{x \to 0} \left[\frac{1 + \frac{2}{3}x + \dots}{3 - \frac{9}{2}x \dots} \right]$	m1		Dividing numerator and denominator by x^2 to get constant terms. OE following a slip.
	$=\frac{1}{3}$	A 1	3	
	Total		14	

8(a) $\frac{dx}{dt} \frac{dy}{dx} = \frac{dy}{dt}$ $e^{t} \frac{dy}{dx} = \frac{dy}{dt} \Rightarrow x \frac{dy}{dx} = \frac{dy}{dt}$ $(b) \frac{d}{dt} \left(\frac{x}{dy} \right) = \frac{d^{2}y}{dt^{2}}; \frac{dx}{dt} \frac{dx}{dt} \left(\frac{x}{dy} \right) = \frac{d^{2}y}{dt^{2}}$ $\frac{dx}{dt} \left(\frac{dy}{dx} + x \frac{dy}{dx^{2}} \right) = \frac{d^{2}y}{dt^{2}}$ $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = \frac{d^{2}y}{dt^{2}}$ $x^{2} \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln x$			7 4 1	34 1		MFP3(cont)
(b) $\frac{d}{dt}\left(\frac{dy}{dx} = \frac{dy}{dt}\right) \Rightarrow x\frac{dy}{dx} = \frac{dy}{dt}$ $e^{t}\frac{dy}{dx} = \frac{dy}{dt} \Rightarrow x\frac{dy}{dx} = \frac{dy}{dt}$ $\frac{dx}{dt}\left(\frac{dy}{dx}\right) = \frac{d^{2}y}{dt^{2}}; \frac{dx}{dt}\frac{d}{dt}\left(x\frac{dy}{dx}\right) = \frac{d^{2}y}{dt^{2}}$ $\frac{dx}{dt}\left(\frac{dy}{dx} + x\frac{d^{2}y}{dx^{2}}\right) = \frac{d^{2}y}{dt^{2}}$ $x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} = \frac{d^{2}y}{dt^{2}}$ $x^{2}\frac{d^{2}y}{dx^{2}} - 3x\frac{dy}{dx} + 4y = 2\ln x \text{ becomes}$ $\frac{d^{2}y}{dt^{2}} - x\frac{dy}{dt} - 3x\frac{dy}{dx} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x \text{ and } 0$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4\frac{dy}{dt^{2}} + 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow $		Comments	otal	Marks	Solution	Q
(b) $\frac{d}{dx}\left(\frac{dy}{dx} = \frac{dy}{dx} \Rightarrow x\frac{dy}{dx} = \frac{dy}{dt}\right)$ $\frac{d}{dx}\left(\frac{x\frac{dy}{dx}}{dx}\right) = \frac{d^2y}{dt^2}; \frac{dx}{dt}\frac{d}{dt}\left(x\frac{dy}{dx}\right) = \frac{d^2y}{dt^2}$ $\frac{dx}{dt}\left(\frac{dy}{dx} + x\frac{dy}{dx^2}\right) = \frac{d^2y}{dt^2}$ $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} = \frac{d^2y}{dt^2}$ $x^2\frac{d^2y}{dx^2} - 3x\frac{dy}{dx} + 4y = 2\ln x \text{ becomes}$ $\frac{d^2y}{dt^2} - x\frac{dy}{dt} - 3x\frac{dy}{dx} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln x \text{ and } 0$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4$		Chain rule		Ml	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\mathrm{d}y}{\mathrm{d}y}$	8(a)
(b) $\frac{d}{dt}\left(x\frac{dy}{dx}\right) = \frac{d^2y}{dt^2}; \frac{dx}{dt}\frac{d}{dx}\left(x\frac{dy}{dx}\right) = \frac{d^2y}{dt^2}$ $\frac{dx}{dt}\left(\frac{dy}{dx} + x\frac{d^2y}{dx^2}\right) = \frac{d^2y}{dt^2}$ $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} = \frac{d^2y}{dt^2}$ $x^2\frac{d^2y}{dx^2} - 3x\frac{dy}{dx} + 4y = 2\ln x \text{ becomes}$ $\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} $					dt dx dt	
$\frac{dx}{dt}\left(\frac{dy}{dx} + x\frac{d^2y}{dx^2}\right) = \frac{d^2y}{dt^2}$ $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} = \frac{d^2y}{dt^2}$ $x^2\frac{d^2y}{dx^2} - 3x\frac{dy}{dx} + 4y = 2\ln x \text{becomes}$ $\frac{d^2y}{dt^2} - x\frac{dy}{dx} - 3x\frac{dy}{dx} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{(using (a)}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t$ $(c) \text{Auxl eqn} m^2 - 4m + 4 = 0$ $(m - 2)^2 = 0, m = 2$ $\text{CF:} (y_C =) (At + B)e^{2t}$ $\text{PI} \text{Try} (y_P =) at + b$ $-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2}$ $\text{GS} \{y\} = (At + B)e^{2t} + 0.5(t + 1)$ $\text{B1F} 6 \text{Ft on c's CF + PI, provided PI and CF has two arbitrary cons RHS is fn of } t \text{ only}$		CSO AG	2	A1	$\mathbf{u} \mathbf{x} \mathbf{u} \mathbf{t} \mathbf{u} \mathbf{x} \mathbf{u} \mathbf{t}$	
$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = \frac{d^{2}y}{dt^{2}}$ $x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = 2 \ln x \text{becomes}$ $\frac{d^{2}y}{dt^{2}} - x \frac{dy}{dx} - 3x \frac{dy}{dx} + 4y = 2 \ln x$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2 \ln e^{t} \text{(using (a)} \qquad \text{m1}$ $\Rightarrow \frac{d^{2}y}{dt^{2}} - 4 \frac{dy}{dt} + 4y = 2t \qquad \qquad \text{A1} \qquad 5 \qquad \text{CSO AG}$ $\text{(c)} \text{Auxl eqn} m^{2} - 4m + 4 = 0 \qquad \qquad \text{M1} \qquad \text{PI} \qquad \text{PI}$ $(m - 2)^{2} = 0, m = 2 \qquad \qquad \text{A1} \qquad \text{Ft wrong value of } m \text{ provided and } 2 \text{ arb. constants in CF. Co}$ $\text{PI Try} (y_{p} =) at + b \qquad \qquad \text{M1} \qquad \qquad \text{If extras, coeffs. must be show}$ $-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2} \qquad \qquad \text{A1} \qquad \qquad \text{Correct PI. Condone } x \text{ for } t \text{ he}$ $\text{GS} \{y\} = (At + B)e^{2t} + 0.5(t + 1) \qquad \qquad \text{B1F} \qquad 6 \qquad \text{Ft on } c^{2}s \text{ CF} + \text{PI, provided PI}$ $\text{and CF has two arbitrary cons}$ $\text{RHS is fn of } t \text{ only}$		OE $\frac{d}{dx} \left(x \frac{dy}{dx} \right) = \frac{dt}{dx} \frac{d^2y}{dt^2}$		M1	$\frac{d}{dt}\left(x\frac{dy}{dx}\right) = \frac{d^2y}{dt^2}; \frac{dx}{dt}\frac{d}{dx}\left(x\frac{dy}{dx}\right) = \frac{d^2y}{dt^2}$	(b)
$\frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2 \ln x \text{becomes}$ $\frac{d^2y}{dt^2} - x \frac{dy}{dx} - 3x \frac{dy}{dx} + 4y = 2 \ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2 \ln e^t \text{(using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt} - 4 \frac{dy}{dt} + 4y = 2t$ $\Rightarrow d^2$	s M)	Product rule (dep on previous M)		m1	$\frac{\mathrm{d}x}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} + x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right) = \frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$	
$\frac{d^2y}{dt^2} - x\frac{dy}{dx} - 3x\frac{dy}{dx} + 4y = 2\ln x$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))} \qquad \text{m1}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t \qquad \text{A1} \qquad 5 \qquad \text{CSO AG}$ $(c) \text{Auxl eqn} m^2 - 4m + 4 = 0 \qquad \text{M1} \qquad \text{PI}$ $(m-2)^2 = 0, m = 2 \qquad \text{A1} \qquad \text{PI}$ $\text{CF: } (y_C =) (At + B)e^{2t} \qquad \text{M1} \qquad \text{Ft wrong value of } m \text{ provided and } 2 \text{ arb. constants in CF. Co}$ $PI \text{Try } (y_P =) at + b \qquad \text{M1} \qquad \text{If extras, coeffs. must be show}$ $-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2} \qquad \text{A1} \qquad \text{Correct PI. Condone } x \text{ for } t \text{ he}$ $GS \{y\} = (At + B)e^{2t} + 0.5(t + 1) \qquad B1F \qquad 6 \qquad \text{Ft on c's CF + PI, provided PI}$ $and CF \text{ has two arbitrary cons}$ $RHS \text{ is fn of } t \text{ only}$		OE		A1	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = \frac{d^2 y}{dt^2}$	
$\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt} - 4\frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt} - 4\frac{dy}{dt} + 4y = 2\ln e^t \text{ (using (a))}$ $\Rightarrow \frac{d^2y}{dt} - 4\frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt} - 4\frac{dy}{dt}$					$x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 4y = 2 \ln x \text{becomes}$	
$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t$ $\Rightarrow \frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2t$ $(c) \text{ Auxl eqn } m^2 - 4m + 4 = 0$ $(m-2)^2 = 0, m = 2$ $\text{CF: } (y_c =) (At + B)e^{2t}$ $\text{PI Try } (y_p =) at + b$ $-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2}$ M1 $\text{PI Entropy and the equation of } m \text{ provided and } 2 \text{ arb. constants in CF. Co} t \text{ here}$ $\text{If extras, coeffs. must be show}$ $\text{Correct PI. Condone } x \text{ for } t \text{ here}$ $\text{GS } \{y\} = (At + B)e^{2t} + 0.5(t + 1)$ B1F G $\text{Ft on c's CF + PI, provided PI and CF has two arbitrary cons RHS is fn of } t \text{ only}$					$u\iota$ $u\lambda$ $u\lambda$	
(c) Auxl eqn $m^2-4m+4=0$ $(m-2)^2=0$, $m=2$ CF : $(y_C=)$ $(At+B)e^{2t}$ M1 PI Ft wrong value of m provided and 2 arb. constants in CF. Co t here If extras, coeffs. must be show $-4a+4at+4b=2t \Rightarrow a=b=\frac{1}{2}$ A1 Correct PI. Condone x for t he t for t only t for t only				m1		
$(m-2)^{\frac{1}{2}} = 0, m = 2$ $CF: (y_C =) (At + B)e^{2t}$ PI $Try (y_P =) at + b$ $-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2}$ $GS \{y\} = (At + B)e^{2t} + 0.5(t + 1)$ $M1$ $Ft \text{ wrong value of } m \text{ provided and } 2 \text{ arb. constants in CF. Co} t \text{ here}$ $If \text{ extras, coeffs. must be show}$ $Correct \text{ PI. Condone } x \text{ for } t \text{ here}$ $B1F$ $Ft \text{ on } c's \text{ CF + PI, provided PI and CF has two arbitrary cons}$ $RHS \text{ is fn of } t \text{ only}$		CSO AG	5	A1	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 4\frac{\mathrm{d}y}{\mathrm{d}t} + 4y = 2t$	
$(m-2)^{\frac{1}{2}} = 0, m = 2$ $CF: (y_C =) (At + B)e^{2t}$ PI $Try (y_P =) at + b$ $-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2}$ $GS \{y\} = (At + B)e^{2t} + 0.5(t + 1)$ $M1$ $Ft \text{ wrong value of } m \text{ provided and } 2 \text{ arb. constants in CF. Co} t \text{ here}$ $If \text{ extras, coeffs. must be show}$ $Correct \text{ PI. Condone } x \text{ for } t \text{ here}$ $B1F$ $Ft \text{ on } c's \text{ CF + PI, provided PI and CF has two arbitrary cons}$ $RHS \text{ is fn of } t \text{ only}$		PI		M1	$Auxl eqn m^2 - 4m + 4 = 0$	(c)
CF: $(y_C =)$ $(At + B)e^{2t}$ M1 Ft wrong value of m provided and 2 arb. constants in CF. Co t here PI Try $(y_P =)$ $at + b$ M1 Ft wrong value of m provided and 2 arb. constants in CF. Co t here If extras, coeffs. must be show Correct PI. Condone x for t he GS $\{y\} = (At + B)e^{2t} + 0.5(t + 1)$ B1F 6 Ft on c's CF + PI, provided PI and CF has two arbitrary cons RHS is fn of t only		PI				
PI Try $(y_p =)$ $at + b$ M1 If extras, coeffs. must be show $-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2}$ A1 Correct PI. Condone x for t he GS $\{y\} = (At + B)e^{2t} + 0.5(t + 1)$ B1F 6 Ft on c's CF + PI, provided PI and CF has two arbitrary cons RHS is fn of t only	•	Ft wrong value of <i>m</i> provided equal roand 2 arb. constants in CF. Condone <i>x t</i> here				
GS $\{y\} = (At + B)e^{2t} + 0.5(t + 1)$ B1F 6 Ft on c's CF + PI, provided PI and CF has two arbitrary cons RHS is fn of t only	wn to be 0.	If extras, coeffs. must be shown to be		M1	-	
and CF has two arbitrary cons RHS is fn of t only	ere	Correct PI. Condone <i>x</i> for <i>t</i> here		A1	$-4a + 4at + 4b = 2t \Rightarrow a = b = \frac{1}{2}$	
		Ft on c's CF + PI, provided PI is non- and CF has two arbitrary constants an RHS is fn of <i>t</i> only	6	B1F	GS $\{y\} = (At + B)e^{2t} + 0.5(t + 1)$	
				M1	$\Rightarrow y = (A \ln x + B)x^2 + 0.5(\ln x + 1)$	(d)
$y = 1.5$ when $x = 1 \Rightarrow B = 1$ A1F Ft one earlier slip		Ft one earlier slip		A1F		
$y'(x) = (A \ln x + B) 2x + Ax + 0.5 x^{-1}$ m1 Product rule		*		m1		
$y'(1) = 0.5 \Rightarrow A = -2$ A1F Ft one earlier slip						
$y = (1 - 2\ln x)x^2 + \frac{1}{2}(\ln x + 1)$ A1 5 ACF		•	5			
Total 18			18		Total	
TOTAL 75						