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Instructions
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paper is AQA. The Paper Reference is MFP2.

Answer all questions.

Show all necessary working; otherwise marks for method may be lost.
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* The marks for questions are shown in brackets.

Advice
¢ Unless stated otherwise, you may quote formulae, without proof, from the booklet.
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Answer all questions.

1 (a) Given that f(r) = (r — 1)r?, show that
fr+1)—f(r)=r(3r+1)
(b) Use the method of differences to find the value of

99

Z r(3r+1)

r=50

2 The cubic equation
z3 +p22+6z+q =0
has roots o, f and ).
(a) Write down the value of off + iy + yo.
(b) Given that p and ¢ are real and that o2 4+ 2 + 92 = —12:

(1) explain why the cubic equation has two non-real roots and one real root;

(i) find the value of p.
(c) One root of the cubic equation is —1 + 3i.
Find:
(1) the other two roots;

(i1) the value of ¢.

3 Use De Moivre’s Theorem to find the smallest positive angle 6 for which

(cos 0 4 isin0)"° = —i
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(3 marks)

(4 marks)

(1 mark)

(2 marks)

(4 marks)

(3 marks)

(2 marks)

(5 marks)



4 (3
(b)

1

Differentiate xtan™ " x with respect to x.

Show that

1
J tan_lxdx:%—ln\/i

(2 marks)

(5 marks)

5 The sketch shows an Argand diagram. The points 4 and B represent the complex numbers z;
and z, respectively. The angle AOB = 90° and O4 = OB.

(a)
(b)

(c)

(b)

Im(z)
B(z) \ 4

» Re(2)

Explain why z, =iz .
On a single copy of the diagram, draw:
(i) the locus L; of points satisfying |z — z,| = |z — z{|;

(ii) the locus L, of points satisfying arg(z — z,) = argz .

(2 marks)

(2 marks)

(3 marks)

Find, in terms of z;, the complex number representing the point of intersection of L,

and L, .

Show that

o] SRl k2
(k+ 1) 2k 2(k+1)

Prove by induction that for all integers n > 2
1 1 1 1 n+1
l-=5)(l-=l1l-—=5 ) |l——) =——
(-2)( ) ()1 m) ="

Turn over for the next question
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(2 marks)

(3 marks)

(4 marks)
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7 A curve has equation y = 4./x.

(a) Show that the length of arc s of the curve between the points where x =0 and x =1 is
given by

1

4

s = J Xt dx (4 marks)
0 X

(b) (i) Use the substitution x = 4sinh? 6 to show that

J I J8cosh2 0 do (5 marks)

X

(i1)) Hence show that

s =4sinh 1 0.5+/5 (6 marks)

8 (a) (i) Given that z0 —4z3 48 =0, show that z3 =2+ 2i. (2 marks)
(1) Hence solve the equation
0 473 +8=0
giving your answers in the form rei? , where r>0 and —n<0 < m. (6 marks)
(b) Show that, for any real values of k& and 0,
(z — ke'¥)(z — ke™0) = 22 — 2kzcos 0 + K (2 marks)

(c) Express z° —4z3 4+ 8 as the product of three quadratic factors with real coefficients.
(3 marks)

END OF QUESTIONS
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