

General Certificate of Education (A-level) January 2013

Mathematics

MFP2

(Specification 6360)

Further Pure 2

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

WIFT 2	C - 14°	N/1	T-4-1	C
Q	Solution	Marks	Total	Comments
1(a)	$\cosh x = \frac{1}{2} (e^x + e^{-x})$			$or 12\cosh x = 6(e^x + e^{-x})$
	$or \sinh x = \frac{1}{2} (e^x - e^{-x})$	M1		or $4 \sinh x = 2(e^x - e^{-x})$
	$12\cosh x - 4\sinh x =$			
	$6(e^x + e^{-x}) - 2(e^x - e^{-x})$			
	$12\cosh x - 4\sinh x = 4e^x + 8e^{-x}$	A1 cso	2	AG
(b)	$4e^x + 8e^{-x} = 33$			
	$\Rightarrow 4e^{2x} - 33e^x + 8 (=0)$	M1		attempt to multiply by e ^x to form quadratic in e ^x
	$\Rightarrow (e^x - 8)(4e^x - 1) (=0)$	m1		factorisation attempt (see below) or correct use of formula
	$\Rightarrow (e^x =) 8, (e^x =) \frac{1}{4}$	A1		correct roots
	$(x=) 3 \ln 2$	A1		
	$(x=) -2\ln 2$	A1	5	
	Total		7	

2(a)	Solution	Marks	Total	Comments
2(a)				1
	$4 - 4i = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}$	B1		verification that $\left -2 + i + 6 - 5i \right = 4\sqrt{2}$
a	$ 4-4i = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2}$ $arg(-2+2i) = \pi - tan^{-1}(1) = \frac{3\pi}{4}$	B1	2	verification that arg $(z+i) = \frac{3\pi}{4}$
	Im			
(b) C	Circle	M1		freehand circle sketched
	Centre at $-6 + 5i$	A1		clear from diagram or centre stated
C	Cutting Re axis but not cutting Im axis	A1		
"	'Straight'' line	M1		freehand line
F	Half line from 0 – i	A1		not horizontal or vertical but end point at $0-i$ must be clear from diagram/stated
g	gradient –1 (approx)	A1	6	making 45° to negative Re axis and
				positive Im axis
tl	Calculation based on fact that L_2 passes through centre of L_1	M1		idea of vector $\begin{bmatrix} -4\\4 \end{bmatrix}$ from centre
	Q represents -10 + 9i	A1	2	must write as a complex number
	Total		10	

0	Solution	Marks	Total	Comments
	DOIMMON	17161110	10001	Communic
3(a)	$\frac{1}{5r-2} - \frac{1}{5r+3} = \frac{5r+3-(5r-2)}{(5r-2)(5r+3)}$	M1		condone omission of brackets for M1
	$=\frac{5}{\left(5r-2\right)\left(5r+3\right)}$	A1cso	2	A = 5
(b)	Attempt to use method of differences	M1		at least 2 terms of correct form seen
	$k\left\{\frac{1}{3} - \frac{1}{5n+3}\right\}$	A1		correct cancellation leaving correct two fractions
	$k\left\{\frac{\left(5n+3\right)-3}{3(5n+3)}\right\}$	m1		attempt to write with common denominator
	$S_n = \frac{1}{5} \left\{ \frac{(5n+3)-3}{3(5n+3)} \right\} = \frac{n}{3(5n+3)}$	A1cso	4	$\mathbf{AG} k = \frac{1}{5} \text{ used correctly throughout}$
(c)	$S_{\infty} = \frac{1}{15}$	B1	1	
	Total		7	

	(cont)	N/ 1	TD 4 3	
Q	Solution	Marks	Total	Comments
4(a)(i)	$\alpha + \beta + \gamma = 5$ $\alpha \beta \gamma = 4$	B1 B1	2	
(ii)	$\alpha\beta\gamma^{2} + \alpha\beta^{2}\gamma + \alpha^{2}\beta\gamma = \alpha\beta\gamma(\alpha + \beta + \gamma)$ $= 5 \times 4 = 20$	M1 A1√	2	FT their results from (a)(i)
(b)(i)	If α, β, γ are all real then $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 \geqslant 0$ Hence α, β, γ cannot all be real	E1	1	argument must be sound
(ii)	$\alpha\beta + \beta\gamma + \gamma\alpha = k$	B1		$\sum \alpha \beta = k \qquad PI$
	$ \left(\alpha\beta + \beta\gamma + \gamma\alpha\right)^{2} $ $ = \sum \alpha^{2}\beta^{2} + 2(\alpha\beta\gamma^{2} + \alpha\beta^{2}\gamma + \alpha^{2}\beta\gamma) $	M1		correct identity for $\left(\sum \alpha \beta\right)^2$
	$= -4 + 2(20)$ $k = \pm 6$	A1√ A1 cso	4	substituting their result from (a)(ii) must see $k=$
	Total		9	

	(cont)	3.7 1	/D 4 1	C .
Q	Solution	Marks	Total	Comments
5(a)	$x = \tanh y = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}}$ $xe^{y} + xe^{-y} = e^{y} - e^{-y}$	M1		$or xe^{2y} + x = e^{2y} - 1$
	$\Rightarrow (x+1)e^{-y} = e^{y}(1-x)$ $\Rightarrow (x+1) = e^{2y}(1-x)$	A1		
(b)	$e^{2y} = \frac{1+x}{1-x} \Rightarrow y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ $y = \frac{1}{2} \ln(1+x) - \frac{1}{2} \ln(1-x)$	A1cso M1	3	AG
	$\frac{dy}{dx} = \frac{1}{2(1+x)} + \frac{1}{2(1-x)}$ $= \frac{1-x+1+x}{2(1+x)(1-x)} = \frac{2}{2(1-x^2)} = \frac{1}{1-x^2}$	A1 A1cso	3	AG
	$2(1+x)(1-x)$ $2(1-x^2)$ $1-x^2$	Aleso	3	Alternative 1 $\frac{dy}{dx} = \frac{1}{2} \times \frac{(1-x)}{(1+x)} \times \frac{d}{dx} \left(\frac{1+x}{1-x}\right) M1$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{(1-x)}{(1+x)} \times \frac{(1-x)+(1+x)}{(1-x)^2} A1$ $\Rightarrow \frac{dy}{dx} = \frac{1}{1-x^2} A1 \text{ cso}$
(c)	$\int 4 \tanh^{-1} x dx = 4x \tanh^{-1} x - \int \frac{4x}{1 - x^2} dx$ $4x \tanh^{-1} x + 2\ln(1 - x^2)$ $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3$	M1 A1 B1		must simplify logarithm to ln3
	Value of integral = $\ln 3 + 2 \ln \frac{3}{4}$ $\ln \left(\frac{3^3}{2^4}\right)$	A1 A1cso	5	any correct form all working must be correct
	Total		11	
	Total	1	11	

MIFPZ	(cont)		T	T
Q	Solution	Marks	Total	Comments
6(a)	$\frac{dx}{dt} = 3t^2 \frac{dy}{dt} = 12t$ $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 9t^4 + 144t^2$	B1 M1		both correct 'their' $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2$
	$s = \int \sqrt{9t^4 + 144t^2} \left(dt \right)$ $s = \int_0^3 3t \sqrt{t^2 + 16} dt$	A1 A1cso	4	OE $A = 16$
(b)	$k(t^2 + A)^{\frac{3}{2}}$ $(t^2 + 16)^{\frac{3}{2}}$	M1 A1		where k is a constant; ft their A
	$25^{\frac{3}{2}} - 16^{\frac{3}{2}} = 61$	m1 A1 cso	4	F(3) – F(0) AG
	Total		8	

MPC1 (cont)

MPC1 (cont)	Solution	Marks	Total	Comments
Ų	Solution	Marks	Total	Comments
7(a)(i)	$p(k+1) - p(k) = k^{3} + (k+1)^{3} + (k+2)^{3}$ $-(k-1)^{3} - k^{3} - (k+1)^{3}$	M1		
	$= (k+2)^3 - (k-1)^3$ $= k^3 + 6k^2 + 12k + 8 - (k^2 - 3k^2 + 3k - 1)$	A1		multiplied out & correct unsimplified
	$=9k^{2}+9k+9 = 9(k^{2}+k+1)$ which is a multiple of 9 (since $k^{2}+k+1$ is an integer)	Alcso	3	correct algebra plus statement
(ii)	$p(1) = 1 + 8 = 9$ $\Rightarrow p(1) \text{ is a multiple of } 9$	В1		result true for $n = 1$
	$p(k+1) = p(k) + 9(k^{2} + k + 1)$ or $p(k+1) = p(k) + 9N$	M1		$p(k+1) = \dots$ and result from part (i) considered and mention of divisible by 9
	Assume $p(k)$ is a multiple of 9 so $p(k) = 9M$, where M is integer $\Rightarrow p(k+1) = 9M + 9N = 9(M+N)$ $\Rightarrow p(k+1)$ is a multiple of 9	A1		must have word such as "assume" for A1 convincingly shown
	Result true for $n = 1$ therefore true for $n = 2$, $n = 3$ etc by induction. (or $p(n)$ is a multiple of 9 for all integers $n \ge 1$)	E1	4	must earn previous 3 marks before E1 is scored
(b)	$p(n) = (n-1)^3 + n^3 + (n+1)^3$ $= 3n^3 + 6n$	B1		need to see this OE as evidence or $3n(n^2 + 2)$
	$p(n) = 3n(n^2 + 2)$ & p(n) is a multiple of 9. Therefore $n(n^2 + 2)$ is a multiple of 3 (for any positive integer n.)	E1	2	both of these required plus concluding statement
	Total		9	
	Total		,	

O MFP2	Solution	Marks	Total	Comments
8(a)	r = 8	B1		
	$\tan^{-1} \pm \frac{4\sqrt{3}}{4}$ or $\pm \frac{\pi}{3}$ seen	M1		or $\frac{\pi}{6}$ marked as angle to Im axis with
	$\tan \pm \frac{\pi}{4}$ or $\pm \frac{\pi}{3}$ seen	IVI 1		6 "vector" in second quadrant on Arg diag
	$_{2}$ $^{2\pi}$			
	$\Rightarrow \theta = \frac{2\pi}{3}$	A1	3	$-4 + 4\sqrt{3}i = 8e^{i\frac{2\pi}{3}}$
(b)(i)	modulus of each root $= 2$	B1√		
		M1		use of De Moivre – dividing argument by 3
	4π 2π 8π			A1 if 3 "correct" values not all in
	$\Rightarrow \theta = -\frac{4\pi}{9}, \frac{2\pi}{9}, \frac{8\pi}{9}$	A2	4	requested interval
				$2e^{-i\frac{4\pi}{9}}, 2e^{i\frac{2\pi}{9}}, 2e^{i\frac{8\pi}{9}}$
	1 2			Garage de companya de la companya de
(ii)	Area = $3 \times \frac{1}{2} \times PO \times OR \times \sin \frac{2\pi}{3}$	M1		Correct expression for area of triangle <i>PQR</i>
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{2\pi}{2}$	A 1		
	$=3\times\frac{1}{2}\times2\times2\times\sin\frac{2\pi}{3}$	A1		correct values of lengths in formula
	$=3\sqrt{3}$	A1cso	3	
(c)	Sum of roots (of cubic) = 0	E1		must be stated explicitly
(c)	Sum of 3 roots including Im terms	M1		in form $r(\cos\theta + i\sin\theta)$
		1,11		
	$2\left(\cos\frac{(-)4\pi}{9} + \cos\frac{2\pi}{9} + \cos\frac{8\pi}{9}\right)$	A1		isolating real terms; correct and with "2"
				-4π 4π
	$e^{-i\frac{4\pi}{9}} = \cos\frac{4\pi}{9} - i\sin\frac{4\pi}{9}$ seen earlier			$or \cos \frac{-4\pi}{9} = \cos \frac{4\pi}{9}$ explicitly stated to
	9 - 15111 - 9 Seen earner			earn final A1 mark
	$\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} + \cos\frac{8\pi}{9} = 0$	Alcso	4	AG
	9 9 9 9	AICSO	4	AG
	Total		14	
	TOTAL		75	