

General Certificate of Education

Mathematics 6360

MFP2 Further Pure 2

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
−x EE	deduct x marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MFP2

MFP2				
Q	Solution	Marks	Total	Comments
1(a)	Any method for finding r or θ $r = 4\sqrt{2}, \ \theta = \frac{\pi}{4}$	M1 A1A1	3	
(b)	$z^{5} = 4\sqrt{2} e^{\frac{\pi i}{4}}$ $z = \sqrt{2} e^{\frac{\pi i}{20} + \frac{2k\pi i}{5}}$	M1 A1F A1F		M1 needs some reference to $a + 2k\pi i$ A1 for r A1 for θ incorrect r , θ part (a)
	$z = \sqrt{2} e^{\frac{\pi i}{20}}, \sqrt{2} e^{\frac{9\pi i}{20}}, \sqrt{2} e^{\frac{17\pi i}{20}},$ $\sqrt{2} e^{\frac{-7\pi i}{20}}, \sqrt{2} e^{\frac{-15\pi i}{20}}$	A2,1,0 F	5	Accept r in any form eg $32^{\frac{1}{10}}$ Correct but some answers outside range allow A1 ft incorrect r , θ in part (a)
	Total		8	
2(a)	Attempt to expand $(2r+1)^3 - (2r-1)^3$	M1		
	$(2r+1)^3$ or $(2r-1)^3$ expanded $24r^2 + 2$	A1 A1	3	AG
(b)	$r=1$ $3^3-1^3=24\times 1^2+2$ $r=2$ $5^3-3^3=24\times 2^2+2$	M1A1		3 rows seen Do not allow M1 for $(2n+1)^3 - 1$ not equal to anything
	$r = n \qquad (2n+1)^3 - (2n-1)^3 = 24 \times n^2 + 2$ $(2n+1)^3 - 1 = 24 \sum_{r=1}^{n} r^2 + 2n$			equal to anything
	$(2n+1)^3 - 1 = 24\sum_{r=1}^n r^2 + 2n$	A1		
	$8n^3 + 12n^2 + 6n + 1 - 1 - 2n = 24\sum_{r=1}^{n} r^2$	M1		M1 for multiplication of bracket or taking $(2n+1)$ out as a factor
	$8n^{3} + 12n^{2} + 4n = 24\sum_{r=1}^{n} r^{2}$ $\sum_{r=1}^{n} r^{2} = \frac{1}{6}n(n+1)(2n+1)$	A1		CAO
		A1	6	AG
	Total		9	

MFP2 (cont)

Q Q	Solution	Marks	Total	Comments
3(a)(i)	$z = -i$ $\left -2\sqrt{3} - 2i \right = \sqrt{12 + 4} = 4$	M1		$\left -2\sqrt{3}-2\mathrm{i}\right $
	l l	A1	2	
		121		
(ii)	Centre of circle is $2\sqrt{3} + i$	B1		Do not accept $(2\sqrt{3}, 1)$ unless attempt to
				solve using trig
	Substitute into line	M1		
	$arg\left(2\sqrt{3}+2i\right)=\frac{\pi}{6}$ shown	A1	3	
(b)	<i>y</i> ↑			
	-1			
	Circle: centre correct	B1		
	through $(0,-1)$	B1		
	Half line: through $(0,-1)$	B1		
	through centre of circle	B1	4	
(c)	Shading inside circle and below line	B1F	2	
	Bounded by $y = -1$ Total	B1	2 11	
4(a)(i)	$\sum \alpha = -i$	B1	1	
(ii)	$\sum \alpha \beta = 3$	B1	1	
(iii)	$\alpha\beta\gamma=1+i$	B1	1	
(b)(i)	$\sum \alpha^2 = \left(\sum \alpha\right)^2 - 2\sum \alpha \beta \text{ used}$	M1		Allow if sign error or 2 missing
	$= (-i)^2 - 2 \times 3$	A1F		
	=-7	A1F	3	ft errors in (a)
(ii)	$\sum \alpha^2 \beta^2 = \left(\sum \alpha \beta\right)^2 - 2\sum \alpha \beta \cdot \beta \gamma$	M1		Allow if sign error in 2 missing
	$= \left(\sum \alpha \beta\right)^2 - 2\alpha \beta \gamma \sum \alpha$	A1		
	=9-2(1+i)(-i)	A1F		ft errors in (a)
	=7+2i	A1F	4	ft errors in (a)
(iii)	$\alpha^2 \beta^2 \gamma^2 = (1+i)^2 = 2i$	M1	2	ft sign amon in select
` ´	$z^3 + 7z^2 + (7+2i)z - 2i = 0$	A1F	2	ft sign error in $\alpha\beta\gamma$
(c)	z + iz + (i + 2i)z - 2i = 0	B1F B1F	2	Correct numbers in correct places Correct signs
	Total	БІГ	2 14	Correct signs
<u> </u>	10111			<u>I</u>

MFP2 (cont)

MFP2 (cont)	Solution	Marks	Total	Comments
5	Assume result true for $n = k$	Wiaiks	Total	Comments
	Then $\sum_{r=1}^{k+1} (r^2 + 1)r!$			
	$= ((k+1)^{2} + 1)(k+1)! + k(k+1)!$	M1A1		
	Taking out $(k+1)!$ as factor	m1		
	$= (k+1)!(k^2+2k+1+1+k)$	A1		
	=(k+1)(k+2)!	A1		
	$k = 1$ shown $(1^2 + 1)1! = 2$ $1 \times 2! = 2$	B1		
	$P_k \Rightarrow P_{k+1}$ and P_1 true	E1	7	If all 6 marks earned
	Total		7	
6(a)(i)	$\cos 3\theta + i\sin 3\theta = (\cos \theta + i\sin \theta)^3$	M1		
	$= \cos^3 \theta + 3i\cos^2 \theta \sin \theta + 3i^2 \cos \theta \sin^2 \theta$ $+i^3 \sin^3 \theta$	A1		
	Real parts: $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$	A1	3	AG
(ii)	Imaginary parts:			
()	$\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$	A1F	1	
(iii)	$\tan 3\theta = \frac{\sin 3\theta}{\cos 3\theta}$	M1		Used
	$= \frac{3\cos^2\theta\sin\theta - \sin^3\theta}{\cos^3\theta - 3\sin^2\theta\cos\theta}$ $= \frac{3\tan\theta - \tan^3\theta}{\cos^2\theta - \sin^3\theta}$	A1F		Error in $\sin 3\theta$
	$= \frac{1 - 3\tan^2 \theta}{1 - 3\tan \theta}$ $= \frac{\tan^3 \theta - 3\tan \theta}{3\tan^2 \theta - 1}$	A1	3	AG
(b)(i)	$\tan\frac{3\pi}{12} = 1$	B1		Used (possibly implied)
	$\tan \frac{\pi}{12}$ is a root of $1 = \frac{x^3 - 3x}{3x^2 - 1}$	M1		Must be hence
	$x^3 - 3x^2 - 3x + 1 = 0$	A1	3	
(ii)	Other roots are $\tan \frac{5\pi}{12}$, $\tan \frac{9\pi}{12}$	B1B1	2	
(c)	$\tan\frac{\pi}{12} + \tan\frac{5\pi}{12} + \tan\frac{9\pi}{12} = 3$	M1		Must be hence
	$\tan\frac{\pi}{12} + \tan\frac{5\pi}{12} = 4$	A1	2	
	Total		14	

MFP2 (cont)

MFP2 (cont) Q	Solution	Marks	Total	Comments
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\tanh\frac{x}{2}}\dots$	B1		
	$\operatorname{sech}^2 \frac{x}{2} \dots$	B1		
	$\frac{1}{2}$	D.1		
	2	B1		
	$=\frac{1}{\sinh \frac{X}{2}}$	M1		OE ie expressing in $\sinh \frac{x}{2}$ and $\cosh \frac{x}{2}$
	$= \frac{1}{2\frac{\sinh\frac{x}{2}}{\cosh\frac{x}{2}}\cosh^2\frac{x}{2}}$			2 and compared to the property of the contract
	$cosn\frac{\omega}{2}$			
	$= \frac{1}{2\sinh\frac{x}{2}\cosh\frac{x}{2}}$			
	$=\frac{1}{\sinh x}$	M1		ie use of $\sinh 2A = 2 \sinh A \cosh A$
	$= \operatorname{cosech} x$	A1	6	AG
			-	
	Alternative	(D1)		
	$\ln\sinh\frac{x}{2} - \ln\cosh\frac{x}{2}$	(B1)		
	$\frac{1}{1} \cosh \frac{x}{2}$ $1 \sinh \frac{x}{2}$	(B1B1)		
	$\frac{1}{2} \frac{\cosh \frac{x}{2}}{\sinh \frac{x}{2}} - \frac{1}{2} \frac{\sinh \frac{x}{2}}{\cosh \frac{x}{2}}$	(ВІВІ)		
	$\frac{\cosh^2 \frac{x}{2} - \sinh^2 \frac{x}{2}}{2 + \sinh^2 \frac{x}{2}}$	(M1)		
	$2\sinh\frac{x}{2}\cosh\frac{x}{2}$			
	Use of $\sinh 2A = 2\sinh A \cosh A$ result	(M1) (A1)		
		(A1)		
(b)(i)	$s = \int_{1}^{2} \sqrt{1 + \operatorname{cosech}^{2} x} dx$ $= \int_{1}^{2} \coth x dx$	M1		
	$\int_{0}^{2} a_{1} da$	A 1	2	A.C.
	- J ₁ com x ax	A1	2	AG
(ii)	$s = \left[\ln \sinh x\right]_1^2$	M1		needs to be correct
(11)	$s = \lim_{n \to \infty} x_{J_1}$ $= \ln \sinh 2 - \ln \sinh 1$	A1		needs to be correct
	$= \ln \frac{2\sinh 1 \cosh 1}{\sinh 1}$	AlF		must be seen
	Sinni		,	
	$= \ln(2\cosh 1)$ Total	A1	4 12	AG
	TOTAL		75	