

General Certificate of Education

Mathematics 6360

MDO2 Decision 02

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX

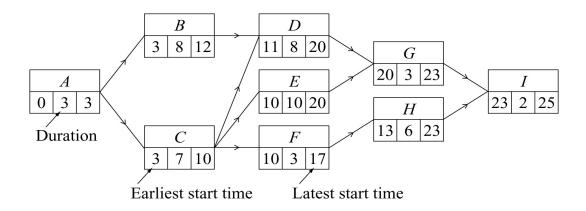
Key to mark scheme and abbreviations used in marking

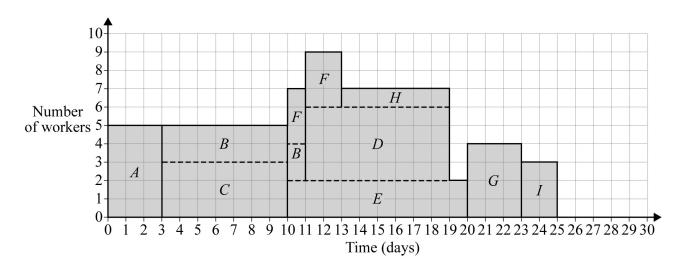
M	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
A	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct x marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.


Where a question asks the candidate to state or write down a result, no method need be shown for full marks.


Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD02

Q	Solution	Marks	Total	Comments
1(a)	G, H and I in correct place	M1		
	Lines (with arrows) correct	A1	2	
(b)	Forward pass (no more than 1 error FT)	M1		See below
	Early start times correct	A1		
	Backward pass (no more than 1 error FT)	M1		
	Latest finish times correct	A1	4	
(c)	Correct critical path: ACEGI	B1		
	Correct minimum time: 25 days	B1	2	
(d)	"Their" critical activities	B1√		See below
, ,	Block $0 \le t \le 10$	B1		
	$10 \le t \le 11$	B1		
	All correct including labels	B1	4	CSO
(e)	Problem with F or day 11	M1		
	Delay start of D (by 2 days),			
	then G and I (by 1 day)	A1		
	Extra time 1 day	B1	3	
	Total		15	

Q	Solution	Marks	Total	Comments
2(a)	Ash Bob Col Dan Emma Task 1 14 10 12 12 14 Task 2 11 13 10 12 12 Task 3 13 11 12 ** 12 Task 4 13 10 12 13 15			
	15 15 15 15 15	B1	1	Extra row of equal non-zero values (expect 15, 15,)
(b)	Ash Bob Col Dan Emma Task 1 3 0 2 0 2 Task 2 0 3 0 0 0 Task 3 2 1 2 ** 0 Task 4 2 0 2 1 3 4 5 5 3 3	M1 A1		Attempt to reduce columns Correct Final row may be different
	Ash Bob Col Dan Emma Task 1 3 0 2 0 2 Task 2 0 3 0 0 0 Task 3 2 1 2 ** 0 Task 4 2 0 2 1 3 1 2 2 0 0	A1 B1		Reduce rows correct Zeros can be covered with 4 lines (shown)
	Ash Bob Col Dan Emma Task 1 2 0 1 0 2 Task 2 0 4 0 1 1 Task 3 1 1 1 ** 0 Task 4 1 0 1 1 3 0 2 1 0 0	M1		Adjustment reducing uncovered elements by 1 and increasing double uncovered by 1 Correct
	Matching E3, B4, C2, D1 Total time 44 min	B1 B1	8	
(c)	No, time cannot be improved ** became 0 from 2 nd tableau onwards	B1		
	B must take task $4 \Rightarrow D$ must Total	E1	2 11	Or other correct reasoning
	10181		11	

Q Q	Solution	Marks	Total	Comments
3(a)	Rob's gain = Con's loss	E1	1	Zero-sum explained
	(at each entry of matrix)			Rob's winnings $+$ Con's winnings $=$ 0
				(for every pair of strategies)
(b)	min			
	-2 5 3 $\boxed{-2}$	B1		min of rows and max of columns
	3 -3 -1 -3			All values correct (seen)
	-3 3 2 -3	3.61		
	max 3 5 3	M1		maximin = -2 either correct
				$minimax = 3 \int_{0}^{\infty} e^{-ither correct}$
	-2 ≠ 3	E1	3	
	\Rightarrow no stable solution			
(0)	D. dominated by D.			
(c)	R_3 dominated by R_1	E1	1	
	(-3, 3, 2) < (-2, 5, 3) so never play R ₃	151	1	
(d)(i)	Choose R_1 with probability p			
(3)(3)	and R_2 with probability $1-p$			
	and R ₂ with probability 1 p			
	Expected gain when C plays:			
	$C_1: -2p+3(1-p)=3-5p$	M1		Attempt at one expression
	$C_2: 5p-3(1-p)=8p-3$			
	$C_3: 3p - (1-p) = -1 + 4p$	A1		All correct unsimplified
	\mathcal{L}_{3} . \mathcal{L}_{p}	711		Till correct anishing intea
	+5 C ₂			
	+3 C ₃	M1		Plotting expected gain for $0 \le p \le 1$
	D	A1		Correct with values at $p = 0$ and $p = 1$
	0 -1			clear
	-2 C ₁			
	3 - 5n = 8n - 3	M1		Choosing C_1 and C_2 intersection or their
	s sp sp s	1411		highest point
	$3 - 5p = 8p - 3$ $\Rightarrow p = \frac{6}{13}$			850 Power
	$\Rightarrow p = \frac{1}{13}$	A1		
	Play R_1 with probability $\frac{6}{13}$			
	and R_2 with probability $\frac{7}{13}$	E1√	7	FT their <i>p</i> (statement needed)
	13	17.1	,	1.1 mon p (statement needed)
(ii)	Value of game = $3 - \frac{30}{13}$			Or $\frac{48}{13} - 3$
	13			
	$=\frac{9}{12}$	B1	1	$=\frac{9}{13}$
	Total		13	15
	Total		13	

Q (cont	Solution	Marks	Total	Comments
4(a)	$x + z \le 9$	M1		One correct inequality or all using <
	$2x + y + 4z \le 40$			1 7
	$4x + 2y + 3z \le 33$	A1	2	All correct
(b)(i)	Pivot is 1 in z-column	M1		May be implied by use
	P x y z s t u value	A1		One row correct (other than pivot)
	1 3 -3 0 5 0 0 45	711		one tow contect (other than prvot)
	0 1 0 1 1 0 0 9	A1		Another row correct (other than pivot)
	0 -2 1 0 -4 1 0 4		4	
	0 1 2 0 -3 0 1 6	A1	4	All correct
(::)	(Vnavy antimal value not reached)			
(ii)	(Know optimal value not reached) since –3 in top row	E1	1	
	Since Sin <u>copion</u>	D1	1	
(c)(i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1		Next pivot 2 in y-column
	0 1 0 1 1 0 0 9			and perhaps divide by 2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1		One row correct (other than pivot)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		Another row correct
		A 1	4	All correct
(**)	Outing walve of Duray acceled	E1√		ET statement if their teleloon has a setime
(ii)	Optimum value of P now reached	EI√		FT statement if their tableau has negative values in top row
	P = 54, x = 0, y = 3, z = 9	B1√		varues in top tow
	s = 0, t = 1, u = 0	B1	3	All correct and final tableau correct
	Total		14	

Q Cont	Solution				Marks	Total	Comments
— ×			JIMHOH		11161113	1000	Comments
5(a)	Stage	State	From	Value			
	1	Н	T	5 *			
		I	T	6 *			
	2	F	Н	-2 + 5 = 3 *	B1		Stage 2 values correct
			T	4			
			I	-2 + 6 = 4			
		G	I	5 + 6 = 11 *			
		G	7.7	4 + 5 0	M1		Stage 3 (6 values)
	3	С	Н	4+5=9			
			$\frac{F}{G}$	5 + 3 = 8 * 2 + 11 = 13			M0 for complete enumeration
			G	2 + 11 - 13			
		D	G	-1+11 = 10 *			
		D	U	-1+11-10			
		Е	F	5 + 3 = 8 *	A 1		Comment.
		L	G	3+11=14	A1		Correct
	4	A	C	2 + 8 = 10	M1		Stage 4 (4 values) and using minimum
			D	-1+10=9*	1411		values from previous stage
							r i i i i i i i i i i i i i i i i i i i
		В	D	-2 + 10 = 8	A1		Stage 4 correct
			E	-3 + 8 = 5 *			
	5	S	A	1 + 9 = 10 *			
			-	5 . 5 . 10 th	A 1		G ₄ 5 4 GGO
			В	5 + 5 = 10 *	A1	6	Stage 5 correct CSO
(h)	Minim	a aget 10			D1		
(b)	Minimun Routes S				B1 B1		First route correct
		ADGIT			B1	3	Second correct (no others)
	<u>s</u>	IDUII		Total	וע	9	Second correct (no others)
				1 Utai		,	

MD02 (cont)				
Q	Solution	Marks	Total	Comments
6(a)	Correct position of S and T Values on edges SP, SQ, UT, VT and WT	M1 A1	2	U
	$\begin{array}{c} P & 15 \\ \hline 22 & 7 & 4 \\ \hline 7 & 8 & 8 \end{array}$	Y 17	5 7 7 12 Z	V 19 T
(b)(i)	Cut C has value 40	В1	1	15 + 0 + 17 + 8
(ii)	$Max flow \le 40$	E1	1	
(c)	Route Flow SQZWT 8 SPYXZVT 4	B1 B1	2	
(d)(i)	3 forward and backward flows correct All initial values correct on edges below	M1 A1	2	
	$\begin{array}{c c} P & \xrightarrow{11} \\ \hline & & \downarrow \\ \hline & & & \downarrow \\ \hline & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & & \downarrow \\ \hline & & & & & & & \downarrow \\ \hline & & & & & & & \downarrow \\ \hline & & & & & & & \downarrow \\ \hline & & & & & & & & \downarrow \\ \hline & & & & & & & & \downarrow \\ \hline & & & & & & & & \downarrow \\ \hline & & & & & & & & \downarrow \\ \hline & & & & & & & & & \downarrow \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline $	13 13	Z	V 15 T 6 / 8 W

Q	Solution	Marks	Total	Comments
6(d)(ii)	Route Flow			(Many different possibilities)
	SQZWT 8 SPYXZVT 4	M1		2 or more correct flows in table
	SPYUT 5 SPYVT 6 SPXZVT 7	A1		Table correct (adding to 37)
	SQXZWT 6	M1		At least 2 flows augmented on diagram
	SQXYVT 1	A1	4	Correct forward and backward final flows
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	91 43 4360 4H17		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
				Other possibility for ZV, VT, ZW and WT
(e)	Flow from <i>Y</i> to <i>X</i> is 3	B1	1	
		tal	13	
	TOTA	AL	75	