| Centre Number | | | Candidate Number | | | |---------------------|--|--|------------------|--|--| | Surname | | | | | | | Other Names | | | | | | | Candidate Signature | | | | | | General Certificate of Education Advanced Subsidiary Examination June 2010 # **Mathematics** **MD01** **Unit Decision 1** Wednesday 9 June 2010 1.30 pm to 3.00 pm #### For this paper you must have: the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. #### Time allowed • 1 hour 30 minutes #### Instructions - Use black ink or black ball-point pen. Pencil or coloured pencil should only be used for drawing. - Fill in the boxes at the top of this page. - Answer all questions. - Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin. - You must answer the questions in the spaces provided. Do not write outside the box around each page. - Show all necessary working; otherwise marks for method may be lost - Do all rough work in this book. Cross through any work that you do not want to be marked. - The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise. ### Information - The marks for questions are shown in brackets. - The maximum mark for this paper is 75. | For Exam | iner's Use | |----------|--------------| | Examine | r's Initials | | Question | Mark | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | TOTAL | | | | | ## Answer all questions in the spaces provided. 1 (a) Draw a bipartite graph representing the following adjacency matrix. | | 1 | 2 | 3 | 4 | 5 | |------------------|---|---|---|---|---| | \boldsymbol{A} | 1 | 0 | 0 | 0 | 1 | | В | 0 | 1 | 1 | 1 | 0 | | <i>C</i> | 0 | 1 | 1 | 1 | 0 | | D | 1 | 0 | 0 | 0 | 1 | | E | 1 | 0 | 0 | 0 | 1 | (2 marks) (b) If A, B, C, D and E represent five people and 1, 2, 3, 4 and 5 represent five tasks to which they are to be assigned, explain why a complete matching is impossible. (2 marks) | QUESTION
PART | | |---------------------|--| | PART | | | REFERENCE | • • • • • • • • • • | | | | | | | | | | | | | | | • • • • • • • • • • | | | | | | | | | | | | | | | • • • • • • • • • • | QUESTION
PART
REFERENCE | | |-------------------------------|--| | | | | | | | | | | ••••• | | | | | | •••••• | | | | | | •••••• | | | •••••• | | | •••••• | | | •••••• | | | ••••• | | | •••••• | ••••• | | | | | | 2 (a |) (i) | Use a bubble sort to rearrange the list of numbers after each pa | | ollow | ving | g nun | nbers into a | scending o | rder, sh | owing | |---|-------|---|-------|-------|-------|---|--------------|------------|-----------|---------| | | | 6 | 2 | 3 | 5 | 4 | | | (3 | marks) | | | (ii) | Write down the number of comp | oaris | ons | on 1 | the f | irst pass. | | (| 1 mark) | | (b |) (i) | Use a shuttle sort to rearrange the list of numbers after each pa | | ollow | ing | , nun | nbers into a | scending o | rder, sho | owing | | | | 6 | 2 | 3 | 5 | 4 | | | (4 | marks) | | | (ii) | Write down the number of comp | paris | ons | on 1 | the f | irst pass. | | (| 1 mark) | | QUESTION
PART
REFERENCE | | | | | | | | | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | | | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••••• | ••••• | | | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••••• | ••••• | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | | | | | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••••• | ••••• | | ••••• | | | ••••• | | ••••• | ••••• | ••••• | ••••• | | | | | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••••• | ••••• | | | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••••• | ••••• | | | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••••• | ••••• | | | | | ••••• | | ••••• | ••••• | ••••• | •••••• | ••••••• | ••••• | | | | | ••••• | | ••••• | ••••• | ••••• | | | | | | | • | ••••• | | ••••• | ••••• | ••••• | ••••• | | | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | | | | | | | ••••• | | ••••• | ••••• | ••••• | | | | | | | • | ••••• | | | ••••• | ••••• | • | ••••• | | | | | | | | | | | | | | | | | QUESTION
PART
REFERENCE | | |-------------------------------|--| ••••• | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | ••••• | The network shows 10 towns. The times, in minutes, to travel between pairs of towns are indicated on the edges. - (a) Use Kruskal's algorithm, showing the order in which you select the edges, to find a minimum spanning tree for the 10 towns. (6 marks) - **(b)** State the length of your minimum spanning tree. (1 mark) - (c) Draw your minimum spanning tree. (3 marks) - (d) If Prim's algorithm, starting at *B*, had been used to find the minimum spanning tree, state which edge would have been the final edge to complete the minimum spanning tree. (1 mark) | QUESTION
PART
REFERENCE | | |-------------------------------|--| | | | | | | | | | | | | | •••••• | ••••• | ••••• | | | ••••• | | | | | | | | | | | | | | | | | | •••••• | | | •••••• | | | •••••• | | | | | The network below shows 13 towns. The times, in minutes, to travel between pairs of towns are indicated on the edges. The total of all the times is 384 minutes. - (a) Use Dijkstra's algorithm on the network below, starting from M, to find the minimum time to travel from M to each of the other towns. (7 marks) - (b) (i) Find the travelling time of an optimum Chinese postman route around the network, starting and finishing at M. (6 marks) - (ii) State the number of times that the vertex F would appear in a corresponding route. (1 mark) | QUESTION
PART
REFERENCE | | |-------------------------------|--| | | | | ••••• | | | | | | | | | | | | ••••• | •••••• | | | •••••• | | | •••••• | | | ••••• | | | ••••• | | | •••••• | | | •••••• | | | •••••• | | | ••••• | | | | | | | | | | | Phil, a squash coach, wishes to buy some equipment for his club. In a town centre, there are six shops, G, I, N, R, S and T, that sell the equipment. The time, in seconds, to walk between each pair of shops is shown in the table. Phil intends to check prices by visiting each of the six shops before returning to his starting point. | | G | I | N | R | S | T | |---|----|----|----|----|----|----| | G | ı | 81 | 82 | 86 | 72 | 76 | | I | 81 | _ | 80 | 82 | 68 | 73 | | N | 82 | 80 | _ | 84 | 70 | 74 | | R | 86 | 82 | 84 | _ | 74 | 70 | | S | 72 | 68 | 70 | 74 | _ | 64 | | T | 76 | 73 | 74 | 70 | 64 | _ | - Use the nearest neighbour algorithm starting from S to find an upper bound for Phil's minimum walking time. (4 marks) - (b) Write down a tour starting from N which has a total walking time equal to your answer to part (a). (1 mark) - (c) By deleting S, find a lower bound for Phil's minimum walking time. (5 marks) | QUESTION | | |-----------|--| | PART | | | REFERENCE | | | KEFEKENCE | QUESTION
PART
REFERENCE | | |-------------------------------|--| ••••• | | | ••••• | | | ••••• | | | | | | | | | ••••• | | | ••••• | | | ••••• | Phil is to buy some squash balls for his club. There are three different types of ball that he can buy: slow, medium and fast. He must buy at least 190 slow balls, at least 50 medium balls and at least 50 fast balls. He must buy at least 300 balls in total. Each slow ball costs £2.50, each medium ball costs £2.00 and each fast ball costs £2.00. He must spend no more than £1000 in total. At least 60% of the balls that he buys must be slow balls. Phil buys x slow balls, y medium balls and z fast balls. (a) Find six inequalities that model Phil's situation. (4 marks) - (b) Phil decides to buy the same number of medium balls as fast balls. - (i) Show that the inequalities found in part (a) simplify to give $$x \ge 190, \ y \ge 50, \ x + 2y \ge 300, \ 5x + 8y \le 2000, \ y \le \frac{1}{3}x$$ (2 marks) (ii) Phil sells all the balls that he buys to members of the club. He sells each slow ball for £3.00, each medium ball for £2.25 and each fast ball for £2.25. He wishes to maximise his profit. On **Figure 1** on page 14, draw a diagram to enable this problem to be solved graphically, indicating the feasible region and the direction of an objective line. (7 marks) (iii) Find Phil's maximum possible profit and state the number of each type of ball that he must buy to obtain this maximum profit. (4 marks) | QUESTION
PART
REFERENCE | | |-------------------------------|--| QUESTION
PART
REFERENCE | | |-------------------------------|--| | •••••• | | | | | | | | | | | | ••••• | | | ••••• | | | | | | | | | •••••• | | | •••••• | | | ••••• | | | | | | ••••• | | | •••••• | | | •••••• | QUESTION
PART
REFERENCE | | |-------------------------------|--| ••••• | 7 A student is testing a numerical method for finding an approximation for π . The algorithm that the student is using is as follows. Line 10 Input $$A, B, C, D, E$$ Line 20 Let $$A = A + 2$$ Line 30 Let $$B = -B$$ Line 40 Let $$C = \frac{B}{A}$$ Line 50 Let $$D = D + C$$ Line 60 Let $$E = (D - 3.14)^2$$ Line 70 If $$E < 0.05$$ then go to Line 90 Line 90 Print ' $$\pi$$ is approximately', D Trace the algorithm in the case where the input values are $$A = 1, B = 4, C = 0, D = 4, E = 0$$ (6 marks) | QUESTION
PART | | |------------------|--| | REFERENCE | QUESTION
PART
REFERENCE | | |-------------------------------|--| ••••• | - **8** A simple connected graph has six vertices. - (a) One vertex has degree x. State the greatest and least possible values of x. (2 marks) - **(b)** The six vertices have degrees $$x-2$$, $x-2$, x , $2x-4$, $2x-4$, $4x-12$ Find the value of x, justifying your answer. (2 marks) | OUESTION | | |---|--| | QUESTION
PART | | | REFERENCE | | | | | | | | | | | | | | | | | | • | • • • • • • • • • • | • | • | • | • | • | • | • • • • • • • • • • | | | QUESTION
PART
REFERENCE | | |-------------------------------|--| | | | | | | | | | | | | | •••••• | ••••• | | | •••••• | | | ••••• | | | | | | | | | | | | | | | •••••• | | | •••••• | | | •••••• | | | | | | | | | | | | | | | | | | •••••• | | | •••••• | | | | | | QUESTION
PART
REFERENCE | | |-------------------------------|---| | REFERENCE | | | ••••• | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | | | | | | END OF QUESTIONS | | | | | Copyrig | ht © 2010 AQA and its licensors. All rights reserved. |