

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
A	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
$\sqrt{\text{or ft or F}}$	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
–x EE	deduct x marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01

Q	Solution	Marks	Total	Comments
1(a)	B 2 2 2 3 3 4 4 5 5	M1 A1	2	
(b)	Initial A3, B4, C2, E5	B1		Starting from D,1
	D-4+B-2+C	M1		Either
	$\frac{\underline{\underline{No}}}{D-5+E-3+A-1}$	A1		
	Yes Complete			
	A1, B4, C2, D5, E3	B1	4	Only solution
	Total		6	
(2)(a)	18 2 12 7 26 19 16 24 2 18 12 7 26 19 16 24 2 12 18 7 26 19 16 24 2 12 18 7 26 19 16 24	M1 A1		Shuttle SCA 1 st Pass
	2 18 12 7 26 19 16 24 2 12 18 7 26 19 16 24 2 7 12 18 26 19 16 24 2 7 12 18 26 19 16 24 2 7 12 18 19 26 16 24 2 7 12 16 18 19 26 24	A1 A1		3 rd Pass 4 th Pass
	2 7 12 16 18 19 24 26	A1	5	All correct
(b)	Pass C S 1 1 1 2 2 1 3 3 2	B1 B1 B1	3	SC All C correct B1 or all S correct B1 or 6,4 scores B1
	Total		8	
	Total		ð	

MD01 (cont)

Q Q	Solution	Marks	Total	Comments
	AB 5	M1	1 Otal	
3(a)(i)	<i>AB</i> 3 <i>BD</i> 3	B1		SCA
	<i>DC</i> 1	A1		9 edges
	DE 4	A1		DC 3 rd
	DF 5	AI		DE 4 th
	FG 6			
	GI 10			
	GH 11	B1	5	All correct
	<i>HJ</i> 13		-	All collect
(ii)	58	B1	1	
(b)(i)	#5 #2 H30	M1		SCA
	HS EU H30	M1		3 values at D
		A1		All correct at D
	40 987 26,49 8	M1		3 values at G
	A 10 0 AT 12	A1		All correct
		B1	6	42 at J – or in script
	C6 F13 130			
	C 6 F ₂₃ I ₃₀			
	20 42 0 5	3.61		4.0
(ii)	28 + x < 42 O.E.	M1	2	Allow \leq SC $x \leq 13$ B1
	x < 14 ISW	A1	2	
	Total		14	
4(a)	A, C, D, F odd nodes	B1		May be implied
	AC + DF = 18 + 22 = 40	M1		
	AD + CF = 32 + 30 = 62	A2,1,0		
	AF + CD = 12 + 30 = 42			
	Repeat AC + DF	B1		May be implied
	Total $164 + 40 = 204$	B1	6	
(b)	Start/finish A/C			
	∴ Repeat DF	B1		Or subtract AC
	Total $164 + 22 = 186$	B1	2	
(c)(i)	Shortest pair AF	B1		
	Distance = $164 + 12 = 176$	B1	2	
(ii)	Start/Finish at C/D	B1	1	May be listed in a route
	Total		11	

MD01 (cont)

MD01 (cont)		36.1	7FD 4 3	
Q	Solution	Marks	Total	Comments
5(a)(i)	7	B1	1	
(ii)	7	B1	1	
(b)(i)	Missing values			
	(PF 3) any 2 values correct	B1		
	$\left(\text{OT } 3\frac{1}{4}\right)$ other 2 values correct	B1	2	
	4 other 2 values correct			
(ii)	FTPOMF			
		B1	1	
	$=8\frac{1}{4}$ ISW			
	·			
(iii)	FTMPOF	M1		Tour
(111)		M1		Visits all vertices
		A1		Correct order
	= 7	B1	4	Concer order
	,	D 1	•	
(iv)	Delete F			
	P 1 0	M1		MST – letters or numbers
	70	A1		3 edges
	1/	A1		Correct
	1/			
	M <			
	1½			
	<u>`</u>			
	T			
	Add $1\frac{1}{4} + 2$	m1		Adding 2 edges from F
	1 4			
	$=6\frac{3}{1}$			2
	4	A1	5	SC $6\frac{3}{4}$ with no working $\frac{2}{5}$
	Tatal	A1		4 /3
	Total		14	

MD01 (cont)

M1A1 M1A1 M1 M1 M1 M1 M1	Q Q	Solution	Marks	Total	Comments
Substitute Su	6(a)	$10 \le x \le 80$	B1		Strict inequalities –1 (or using p, c)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$5 \le y \le 40$	B1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$x + y \le 100$	D1		
(maximise) (P =) $2x + y$ B1 5 May be seen in (b) or (c) B1 M1A1 M1A1 M1A1 (b) $\frac{1}{40}$ $\frac{1}$		$20x + 60y \le 3000$ OE			
M1 A1		(maximise)(P =) 2x + y		5	May be seen in (b) or (c)
P = £180	(b)	20-	M1A1 M1A1	7	For each other line M1– ve gradient (0,50) M1– ve gradient (100,0) Feasible region correct to within 1 square
Max at (30, 40) P = £190 Total	(c)			2	
7(a)(i) $m-1$ B1 1 (ii) $n \ge m-1$ B2 2 B1 for > or $(n > m)$ OE (b) $m(=n)$ B1 1 (c) $M1$ A1 2 $m = 6$ and eulerian All correct	(d)	Max at $(30, 40)$ P = £190			Using (30,40) (± square)
(ii) $n \ge m-1$ B2 2 B1 for $>$ or $(n > m)$ OE (b) $m(=n)$ M1 A1 2 $m=6$ and eulerian All correct Total 6					
(c) $m(=n)$ $M1 \\ A1$ 2 $M = 6 \text{ and eulerian All correct}$ $All correct$	7(a)(i)	m-1	B1	1	
(c) $M1$ $A1$ 2 $m=6$ and eulerian All correct $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A	(ii)	$n \ge m-1$	B2	2	B1 for $>$ or $(n > m)$ OE
Total 2 All correct A1 2 All correct	(b)	m(=n)	B1	1	
	(c)			2	
		Total		6	
TOTAL 75		TOTAL		75	