

General Certificate of Secondary Education

June 2009

BIOLOGY Unit Biology B3

Foundation Tier

Wednesday 20 May 20091.30 pm to 2.15 pm

For this paper you must have:

- a ruler.

You may use a calculator.

Time allowed: 45 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 45 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Advice

- In all calculations, show clearly how you work out your answer.

For Examiner's Use			
Question	Mark	Question	Mark
1		6	
2		7	
3			
4			
5			
Total (Column 1)			
Total (Column 2) \longrightarrow			
TOTAL			
Examiner's Initials			

1 The diagram shows the human breathing system.

1 (a) On the diagram, label structures \mathbf{A} and \mathbf{B}.
Choose your answers from the words in the box.

alveolus	capillary	diaphragm	rib

In the lungs, oxygen passes from the air into the blood.
Carbon dioxide passes from the blood into the air.

1 (b) Which letter, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, shows where oxygen enters the blood? \square
(1 mark)

1 (c) When oxygen enters the blood it combines with haemoglobin.
Draw a ring around the correct word or phrase to complete each sentence.

1 (c) (i) Haemoglobin is found in the

plasma
red blood cells
white blood cells

(1 mark)
plasma
red blood cells
white blood cells

Turn over for the next question

2 (a) Which two of the following substances are found in the urine of a healthy person?
Tick ($\mathcal{\checkmark}$) two boxes.

2 (b) A person with kidney disease can be treated by dialysis.
The diagram shows how dialysis works.
The circles represent molecules of different substances.

Draw a ring around the correct word or phrase to complete each sentence.

2 (b) (i) During dialysis, urea moves out of the

blood cells
blood plasma
dialysis fluid

2 (b) (ii) During dialysis, urea moves into the

blood cells
blood plasma
dialysis fluid

2 (b) (iii) Urea moves by the process of

diffusion
digestion
transpiration

2 (b) (iv) To allow the movement of urea, the dialysis membrane is

impermeable partially permeable thick
$(1 \mathrm{mark})$

2 (b) (v) The urea can pass through the membrane because

the urea molecules are | large |
| :--- |
| round |
| small |.

2 (c) For most patients a kidney transplant is better than continued dialysis treatment.
Tick (\checkmark) one box to complete the sentence.
One major problem with a kidney transplant is that
drug treatment is needed to suppress the immune system.

hospital visits are needed three times a week.
yearly costs are higher than for dialysis. \square
(1 mark)

3 (a) Microorganisms can be grown on agar jelly in a Petri dish.
List \mathbf{A} gives three actions used when growing microorganisms.
List B gives four possible effects of these actions.
Draw a straight line from each action in List A to its effect in List B.

List A-Action

Make sure the temperature for growing the microorganisms is no higher than $25^{\circ} \mathrm{C}$

The lid of the Petri dish is held on with tape

List B-Effect

To reduce the growth of pathogens

To kill unwanted microorganisms

To prevent microorganisms from the air getting into the Petri dish

To prevent oxygen entering the Petri dish

3 (b) UHT milk is milk that has been heated to $135^{\circ} \mathrm{C}$, then cooled.
In an investigation, three sterile Petri dishes containing sterile agar jelly were set up as follows.

- UHT milk was added to dish $\mathbf{1}$.
- Untreated milk was added to dish 2.
- Dish 3 was left unopened as a control.
- The dishes were kept at $25^{\circ} \mathrm{C}$ for two days.

The results are shown in the diagram on the opposite page.

Dish 1
UHT milk

Dish 2
Untreated milk

3 (b) (i) Describe the difference in appearance between dishes $\mathbf{1}$ and $\mathbf{2}$ after two days.
\qquad
\qquad

3 (b) (ii) Give one reason for this difference.
\qquad
\qquad

3 (b) (iii) There was no change in the appearance of dish $\mathbf{3}$ after two days.
Give one reason why.
\qquad
\qquad

4 The photograph shows part of the surface of a plant root. This part of the root is covered with hundreds of structures like the one labelled \mathbf{X}.

The photograph showing part of a plant root cannot be reproduced here due to third party copyright constraints.

4 (a) What is the name of structure \mathbf{X} ?
Draw a ring around one answer.
root hair stoma villus

4 (b) (i) Use the scale to measure the length $\mathbf{Y}-\mathbf{Z}$ on the photograph.
On the photograph, length $\mathbf{Y}-\mathbf{Z}=$ \qquad mm.

4 (b) (ii) The photograph shows the root magnified 100 times.
Calculate the actual length $\mathbf{Y}-\mathbf{Z}$.
\qquad
\qquad
\qquad
Actual length $\mathbf{Y}-\mathbf{Z}=$ \qquad mm.
(2 marks)

4 (b) (iii) Structure \mathbf{X} is very small. There are thousands of structures like \mathbf{X} on a plant root.

How does this help the plant?
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

5 The table gives information about the growth of different types of organism.
The figures were obtained during the period of fastest growth for each organism.

Organism	Time taken to double in mass
Bacteria	40 minutes
Yeasts	2 hours
Fusarium	4 hours
Algae	5 hours
Soybeans	1 week
Cattle	8 weeks

5 (a) (i) Which type of organism grows the fastest? \qquad

5 (a) (ii) How many times faster than cattle do soybeans double in mass?
\qquad

5 (a) (iii) Fusarium grows at its fastest rate in a fermenter. Some scientists put one tonne of Fusarium into a fermenter.

Use data from the table to calculate how much Fusarium there would be in the fermenter after 8 hours.

Draw a ring around one answer.
2 tonnes
4 tonnes
8 tonnes

5 (b) Fusarium is used to make mycoprotein.
Read the information about substances found in mycoprotein.

- Protein - can be used for making cells, enzymes and antibodies.
- Fats - are rich in energy but large amounts in the diet can cause circulatory problems.
- Dietary fibre - helps to reduce the risk of colon cancer.

The table compares the composition of mycoprotein and beef.

Substance	Percentage of dry mass	
	Mycoprotein	Beef
Protein	47.2	68.3
Fat	13.5	30.1
Dietary fibre	19.2	0.0

Use the information above to answer the questions.
5 (b) (i) Give two reasons why it would be better to eat mycoprotein instead of beef.

1 \qquad
\qquad

2 \qquad
\qquad
(Extra space) \qquad
5 (b) (ii) Give one reason why it would be better to eat beef instead of mycoprotein.
\qquad
\qquad
\qquad

6 The heart pumps blood around the body. This causes blood to leave the heart at high pressure.

The graph shows blood pressure measurements for a person at rest. The blood pressure was measured in an artery and in a vein.

6 (a) Which blood vessel, \mathbf{A} or \mathbf{B}, is the artery?
Blood vessel \qquad
Give two reasons for your answer.
Reason 1 \qquad
\qquad
Reason 2 \qquad
\qquad

6 (b) Use information from the graph to answer these questions.
6 (b) (i) How many times did the heart beat in 15 seconds?

6 (b) (ii) Use your answer from part (b)(i) to calculate the person's heart rate per minute.
\qquad
\qquad
Heart rate $=$ \qquad beats per minute (1 mark)

6 (c) During exercise, the heart rate increases. This supplies useful substances to the muscles and removes waste materials from the muscles at a faster rate.

6 (c) (i) Name two useful substances that must be supplied to the muscles at a faster rate during exercise.

1 \qquad

2
2 .. (2 marks)

6 (c) (ii) Name one waste substance that must be removed from the muscles at a faster rate during exercise.

7 Three students each prepared a flask of yoghurt.

- They used equal volumes of the same type of milk.
- They added equal amounts of a 'yoghurt starter culture' (plain yoghurt which contains living bacteria).
- They then placed the three flasks in a water bath at $25^{\circ} \mathrm{C}$.
- They measured the pH of their yoghurt at 50 -minute intervals using a pH meter.

The table shows their pH measurements.

Time in minutes	$\mathbf{p H}$			
	Flask 1	Flask 2	Flask 3	Mean
0	6.4	6.4	6.5	6.4
50	6.3	6.4	6.5	6.4
100	5.9	6.1	6.3	6.1
150	5.0	5.5	5.7	5.4
200	4.6	5.8	4.9	5.1
250	4.3	4.6	4.6	4.5

7 (a) (i) Give two variables that were controlled in this investigation.
\qquad

7 (a) (ii) Why was it helpful to do the investigation three times and to calculate mean values?
\qquad
\qquad

7 (a) (iii) The students chose to use a pH meter rather than pH indicator papers.
Explain why.
\qquad
\qquad
(Extra space) \qquad

7 (b) One of the results in the table appears to be anomalous.
Which result is this?
\qquad
\qquad

7 (c) The students noticed that, after 200 minutes, their yoghurts began to thicken.
What caused this?
\qquad
\qquad
\qquad
\qquad
(Extra space) \qquad

END OF QUESTIONS

