$A Q^{A}$

General Certificate of Education

Mathematics 6360 2013

Material accompanying this Specification

- Specimen and Past Papers and Mark Schemes
- Reports on the Examination
- Teachers' Guide

SPECIFICATION

This specification will be published annually on the AQA Website (www.aqa.org.uk). If there are any changes to the specification centres will be notified in print as well as on the Website. The version on the Website is the definitive version of the specification.

Further copies of this specification booklet are available from:
AQA Logistics Centre, Unit 2, Wheel Forge Way, Ashburton Park, Trafford Park, Manchester, M17 1EH. Telephone: 08704101036 Fax: 01619531177
or
can be downloaded from the AQA Website: www.aqa.org.uk
Copyright © 2011 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.
Contents
Background Information
1 Advanced Subsidiary and Advanced Level Specifications 6
2 Specification at a Glance 7
3 Availability of Assessment Units and Entry Details 11
Scheme of Assessment
4 Introduction 15
5 Aims 16
6 Assessment Objectives 17
7 Scheme of Assessment - Advanced Subsidiary in Mathematics 18
8 Scheme of Assessment - Advanced GCE in Mathematics 20
9 Scheme of Assessment - Advanced Subsidiary and Advanced GCE in Pure Mathematics 23
10 Scheme of Assessment - Advanced Subsidiary and
Advanced GCE in Further Mathematics 26
Subject Content
11 Summary of Subject Content 29
12 AS Module - Pure Core 1 33
13 AS Module - Pure Core 2 37
14 A2 Module - Pure Core 3 40

15 A2 Module - Pure Core 4 44

16 AS Module - Further Pure 148

17 A2 Module - Further Pure 2 51

18 A2 Module - Further Pure $3 \quad 54$

19 A2 Module - Further Pure 4 57

20 AS Module - Statistics $1 \quad 59$

21 A2 Module - Statistics $2 \quad 62$

22 A2 Module - Statistics $3 \quad 65$

23 A2 Module - Statistics $4 \quad 68$

24 AS Module - Mechanics 171

25 A2 Module - Mechanics $2 \quad 74$

26 A2 Module - Mechanics 3 77

27 A2 Module - Mechanics $4 \quad 79$

28 A2 Module - Mechanics 5 82

29 AS Module - Decision 184

30 A2 Module - Decision $2 \quad 86$

Key Skills and Other Issues

31 Key Skills - Teaching, Developing and Providing Opportunities for Generating Evidence88
32 Spiritual, Moral, Ethical, Social, Cultural and Other Issues 94
Centre-assessed Component
33 Nature of Centre-assessed Component 95
34 Guidance on Setting Centre-assessed Component 96
35 Assessment Criteria 96
36 Supervision and Authentication 99
37 Standardisation 100
38 Administrative Procedures 101
39 Moderation 103
Awarding and Reporting
40 Grading, Shelf-life and Re-sits 104
Appendices
A Grade Descriptions 106
B Formulae for AS/A level Mathematics Specifications 108
C Mathematical Notation 110
D Record Forms 115
E Overlaps with other Qualifications 116
F Relationship to other AQA GCE Mathematics and StatisticsSpecifications117

Background Information

Advanced Subsidiary and Advanced Level Specifications

1.1 Advanced Subsidiary (AS)
1.2 Advanced Level (AS+A2)

Advanced Subsidiary courses were introduced in September 2000 for the award of the first qualification in August 2001. They may be used in one of two ways:

- as a final qualification, allowing candidates to broaden their studies and to defer decisions about specialism;
- as the first half (50%) of an Advanced Level qualification, which must be completed before an Advanced Level award can be made. Advanced Subsidiary is designed to provide an appropriate assessment of knowledge, understanding and skills expected of candidates who have completed the first half of a full Advanced Level qualification. The level of demand of the AS examination is that expected of candidates half-way through a full A Level course of study.
The Advanced Level examination is in two parts:
- Advanced Subsidiary (AS) - 50% of the total award;
- a second examination, called A2 - 50% of the total award.

Most Advanced Subsidiary and Advanced Level courses are modular. The AS comprises three teaching and learning modules and the A2 comprises a further three teaching and learning modules. Each teaching and learning module is normally assessed through an associated assessment unit. The specification gives details of the relationship between the modules and assessment units.
With the two-part design of Advanced Level courses, centres may devise an assessment schedule to meet their own and candidates' needs. For example:

- assessment units may be taken at stages throughout the course, at the end of each year or at the end of the total course;
- AS may be completed at the end of one year and A2 by the end of the second year;
- AS and A2 may be completed at the end of the same year.

Details of the availability of the assessment units for each specification are provided in Section 3.

Specification at a Glance

2.1 General

All assessment units are weighted at 16.7% of an A Level (33.3% of an AS). Three units are required for an AS subject award, and six for an A Level subject award. Each unit has a corresponding teaching module. The subject content of the modules is specified in Section 11 and following sections of this specification.

The unit Statistics 1 is available with coursework. This unit has an equivalent unit without coursework. The same teaching module is assessed, whether the assessment unit with or without coursework is chosen. So, Module Statistics 1 (Section 20) can be assessed by either unit MS1A or unit MS1B. For the unit with coursework, the coursework contributes 25% towards the marks for the unit, and the written paper 75% of the marks.
Pure Core, Further Pure, Mechanics and Decision Mathematics units do not have coursework.

The papers for units without coursework are 1 hour 30 minutes in duration and are worth 75 marks.

The paper for MS1A (with coursework) is 1 hour 15 minutes in duration and is worth 60 marks.

For units in which calculators are allowed (ie all except MPC1) the rules (http://web.aqa.org.uk/admin/p conduct.php) regarding what is permitted for GCE Maths and GCE Statistics are the same as for any other GCE examination.

Most models of scientific or graphical calculator are allowed. However, calculators that feature a 'Computer Algebra System' (CAS) are not allowed. It is usually clear from the manufacturer's specifications whether a model has this feature.

2.2 List of units for AS/A Level Mathematics

The following units can be used towards subject awards in AS Mathematics and A Level Mathematics. Allowed combinations of these units are detailed in the sections 2.3 and 2.4.

Pure Core 1	MPC1	AS
Pure Core 2	MPC2	AS
Pure Core 3	MPC3	A2
Pure Core 4	MPC4	A2
Statistics 1A	MS1A	AS with coursework
Statistics 1B	MS1B	AS without coursework
Statistics 2B	MS2B	A2
Mechanics 1B	MM1B	AS
Mechanics 2B	MM2B	A2
Decision 1	MD01	AS
Decision 2	MD02	A2

2.3 AS Mathematics Comprises 3 AS units. Two units are compulsory.

2.4 A Level Mathematics

Comprises 6 units, of which 3 or 4 are AS units. Four units are compulsory.

together with

or

Notes

* - calculator not allowed
unit includes coursework assessment
Many combinations of AS and A2 optional Applied units are permitted for A Level Mathematics.

However, the two units chosen must assess different teaching modules. For example, units MS1B and MM1B assess different teaching modules and this is an allowed combination. However, units MS1A and MS1B both assess module Statistics 1, and therefore MS1A and MS1B is not an allowed combination.

Also a second Applied unit (MS2B, MM2B and MD02) can only be chosen in combination with a first Applied unit in the same application. For example, MS2B can be chosen with MS1A (or MS1B), but not with MM1B or MD01.
2.5 List of units for AS/A Level The following units can be used towards subject awards in Pure Mathematics AS Pure Mathematics and A Level Pure Mathematics. Allowed combinations of these units are detailed in the sections 2.6 and 2.7.

Pure Core 1	MPC1	AS
Pure Core 2	MPC2	AS
Pure Core 3	MPC3	A2
Pure Core 4	MPC4	A2
Further Pure	MFP1	AS
Further Pure	MFP2	A2
Further Pure	MFP3	A2
Further Pure	MFP4	A2

2.6 AS Pure Mathematics

Comprises 3 compulsory AS units.

2.7 A Level Pure Mathematics

together with

Notes $\quad *$ - calculator not allowed
The units in AS/A Level Pure Mathematics are common with those for AS/A Level Mathematics and AS/A Level Further Mathematics. Therefore there are restrictions on combinations of subject awards that candidates are allowed to enter. Details are given in section 3.4.

2.8 AS and A Level Further Mathematics

Many combinations of units are allowed for AS and A Level Further Mathematics. Four Further Pure units are available. (Pure Core Units cannot be used towards AS/A Level Further Mathematics.) Any of the Applied units listed for AS/A Level Mathematics may be used towards AS/A Level Further Mathematics and there are additional Statistics and Mechanics units available only for Further Mathematics.

Some units which are allowed to count towards AS/A Level Further Mathematics are common with those for AS/A Level Mathematics and AS/A Level Pure Mathematics. Therefore there are restrictions on combinations of subject awards that candidates are allowed to enter. Details are given in section 3.4.

The subject award AS Further Mathematics requires three units, one of which is chosen from MFP1, MFP2, MFP3 and MFP4, and two more units chosen from the list below. All three units can be at AS standard: for example, MFP1, MM1B and MS1A could be chosen. All three units can be in Pure Mathematics: for example, MFP1, MFP2 and MFP4 could be chosen.

The subject award A Level Further Mathematics requires six units, two of which are chosen from MFP1, MFP2, MFP3 and MFP4, and four more units chosen from the list below. At least three of the six units for A Level Further Mathematics must be at A2 standard, and at least two must be in Pure Mathematics.
2.9 List of units for AS/A Level The following units can be used towards subject awards in Further Mathematics AS Further Mathematics and A Level Further Mathematics.

Further Pure 1	MFP1	AS
Further Pure 2	MFP2	A2
Further Pure 3	MFP3	A2
Further Pure 4	MFP4	A2
Statistics 1A	MS1A	AS with coursework
Statistics 1B	MS1B	AS without coursework
Statistics 2B	MS2B	A2
Statistics 3	MS03	A2
Statistics 4	MS04	A2
Mechanics 1B	MM1B	AS
Mechanics 2B	MM2B	A2
Mechanics 3	MM03	A2
Mechanics 4	MM04	A2
Mechanics 5	MM05	A2
Decision 1	MD01	AS
Decision 2	MD02	A2

Notes
Only one unit from MS1A and MS1B can be counted towards a subject award in AS or A Level Further Mathematics.

MFP2, MFP3 and MFP4 are independent of each other, so they can be taken in any order.

MS03 and MS04 are independent of each other, so they can be taken in any order.

MM03, MM04 and MM05 are independent of each other, so they can be taken in any order.

Availability of Assessment Units and Entry Details

3.1 Availability of Assessment Units

Examinations based on this specification are available as follows:

	Availability of Units		Availability of Qualification	
	AS	A2	AS	A Level
January series	MPC1	MPC3		
	MPC2	MPC4		
	MS1A	MS2B		
	MS1B	MM2B	All	
	MM1B	MD02		All
	MD01	MFP2		
June series	All	MFP3		All

3.2 Sequencing of Units

There are no restrictions on the order in which assessment units are taken. However, later teaching modules assume some or all of the knowledge, understanding and skills of earlier modules. For example, some material in MPC2 depends on material in MPC1 and some material in MPC4 depends on material in MPC3. Some of the additional units available for Further Mathematics are exceptions to this general rule (see Section 2.9). Details of the prerequisites for each module are given in the introductions to the individual modules. It is anticipated that teachers will use this and other information to decide on a teaching sequence.
3.3 Entry Codes

Normal entry requirements apply, but the following information should be noted.
The following unit entry codes should be used.

Module assessed by Unit	Standard of assessment	With or without coursework	Unit Entry Code
Pure Core 1	AS	without	MPC1
Pure Core 2	AS	without	MPC2
Pure Core 3	A2	without	MPC3
Pure Core 4	A2	without	MPC4
Further Pure 1	AS	without	MFP1
Further Pure 2	A2	without	MFP2
Further Pure 3	A2	without	MFP3
Further Pure 4	A2	without	MFP4
Statistics 1	AS	with	MS1A
Statistics 1	AS	without	MS1B
Statistics 2	A2	without	MS2B
Statistics 3	A2	without	MS03
Statistics 4	A2	without	MS04
Mechanics 1	AS	without	MM1B
Mechanics 2	A2	without	MM2B
Mechanics 3	A2	without	MM03
Mechanics 4	A2	without	MM04
Mechanics 5	A2	without	MM05
Decision 1	AS	without	MD01
Decision 2	A2	without	MD02

The Subject Code for entry to the Mathematics AS only award is 5361.

The Subject Code for entry to the Pure Mathematics AS only award is 5366 .

The Subject Code for entry to the Further Mathematics AS only award is 5371 .

The Subject Code for entry to the Mathematics Advanced Level award is 6361 .

The Subject Code for entry to the Pure Mathematics Advanced Level award is 6366 .

The Subject Code for entry to the Further Mathematics Advanced Level award is 6371.
3.4 Rules for Combinations of Awards and Unit Entries

Combinations of subject awards for this specification are subject to the following restrictions.

- Awards in the following pairs of subjects titles will not be allowed:

AS Mathematics and AS Pure Mathematics; AS Mathematics and A Level Pure Mathematics; A Level Mathematics and AS Pure Mathematics; A Level Mathematics and A Level Pure Mathematics.

- Awards in the following pairs of subjects titles will not be allowed:

AS Pure Mathematics and AS Further Mathematics;
AS Pure Mathematics and A Level Further Mathematics;
A Level Pure Mathematics and AS Further Mathematics; A Level Pure Mathematics and A Level Further Mathematics.

Units that contribute to an award in A Level Mathematics may not also be used for an award in Further Mathematics.

- Candidates who are awarded certificates in both A Level Mathematics and A Level Further Mathematics must use unit results from 12 different teaching modules.
- Candidates who are awarded certificates in both A Level Mathematics and AS Further Mathematics must use unit results from 9 different teaching modules.
- Candidates who are awarded certificates in both AS Mathematics and AS Further Mathematics must use unit results from 6 different teaching modules.

Note that AQA advises against the award of certificates in AS Further Mathematics in the first year of a two-year course, because early certification of AS Further Mathematics can make it difficult for a candidate to obtain their best grade for A Level Mathematics.

There are also restrictions on combinations of unit entries for this Specification and AQA GCE Statistics. Concurrent entries for the following pairs of units will not be accepted:

MS1A	and	SS1A
MS1A	and	SS1B
MS1B	and	SS1A
MS1B	and	SS1B

In addition, concurrent entries for:
MS1A and MS1B
will not be accepted.
3.5 Classification Code

Every specification is assigned to a national classification code indicating the subject area to which it belongs.
The classification codes for this specification are:
2210 Advanced Subsidiary GCE in Mathematics
2330 Advanced Subsidiary GCE in Further Mathematics
2230 Advanced Subsidiary GCE in Pure Mathematics
2210 Advanced GCE in Mathematics
2330 Advanced GCE in Further Mathematics
2230 Advanced GCE in Pure Mathematics

It should be noted that, although Pure Mathematics qualifications have a different classification code, they are discounted against the other two subjects for the purpose of the School and College Performance Tables. This means that any candidate with AS/A level Pure Mathematics plus either AS/A level Mathematics or AS/A level Further Mathematics will have only one grade (the highest) counted for the purpose of the Performance Tables. Any candidate with all three qualifications will have either the Mathematics and Further Mathematics grades or the Pure Mathematics grade only counted, whichever is the more favourable.

3.6 Private Candidates | This specification is available to private candidates. |
| :--- |
| Private candidates who have previously entered this specification can |
| enter units with coursework (as well as units without coursework) |
| providing they have a coursework mark which can be carried forward. |
| Private candidates who have not previously entered for this specification |
| can enter units without coursework only. |
| Private candidates should write to AQA for a copy of 'Supplementary |
| Guidance for Private Candidates'. |

3.7 Access Arrangements and We have taken note of equality and discrimination legislation and the Special Consideration interests of minority groups in developing and administering this specification.

We follow the guidelines in the Joint Council for Qualifications (JCQ) document: Access Arrangements, Reasonable and Special Consideration: General and Vocational Qualifications. This is published on the JCQ website (http://www.jcq.org.uk) or you can follow the link from our website (http://www.aqa.org.uk).

Applications for access arrangements and special consideration should be submitted to AQA by the Examinations Officer at the centre.

3.8 Language of Examinations

All Assessment Units in this subject are provided in English only.

Scheme of Assessment

Introduction

AQA offers one specification in GCE Mathematics, and a separate specification in GCE Statistics.
This specification is a development from both the AQA GCE Mathematics Specification A (6300) (which was derived from the School Mathematics Project (SMP) 16-19 syllabus) and the AQA GCE Mathematics and Statistics Specification B (6320). It includes optional assessed coursework in one Statistics unit, but coursework is not a compulsory feature.

This specification is designed to encourage candidates to study mathematics post-16. It enables a variety of teaching and learning styles, and provides opportunities for students to develop and be assessed in five of the six Key Skills.

This GCE Mathematics specification complies with:

- the Common Criteria;
- the Subject Criteria for Mathematics;
- the GCSE, GCE, Principal Learning and Project Code of Practice, April 2011;
- the GCE Advanced Subsidiary and Advanced Level Qualification-Specific Criteria.

The qualifications based on this specification are a recognised part of the National Qualifications Framework. As such, AS and A Level provide progression from Key Stage 4, through post-16 studies and form the basis of entry to higher education or employment.

Prior Level of Attainment
Mathematics is, inherently, a sequential subject. There is a progression of material through all levels at which the subject is studied. The Subject Criteria for Mathematics and therefore this specification build on the knowledge, understanding and skills established at GCSE Mathematics.

There is no specific prior requirement, for example, in terms of tier of GCSE entry or grade achieved. Teachers are best able to judge what is appropriate for different candidates and what additional support, if any, is required.

Aims

The aims set out below describe the educational purposes of following a course in Mathematics/Further Mathematics/Pure Mathematics and are consistent with the Subject Criteria. They apply to both AS and Advanced specifications. Most of these aims are reflected in the assessment objectives; others are not because they cannot be readily translated into measurable objectives. The specification aims to encourage candidates to:
a. develop their understanding of mathematics and mathematical processes in a way that promotes confidence and fosters enjoyment;
b. develop abilities to reason logically and to recognise incorrect reasoning, to generalise and to construct mathematical proofs;
c. extend their range of mathematical skills and techniques and use them in more difficult unstructured problems;
d. develop an understanding of coherence and progression in mathematics and of how different areas of mathematics can be connected;
e. recognise how a situation may be represented mathematically and understand the relationship between 'real world' problems and standard and other mathematical models and how these can be refined and improved;
f. use mathematics as an effective means of communication;
g. read and comprehend mathematical arguments and articles concerning applications of mathematics;
h. acquire the skills needed to use technology such as calculators and computers effectively, to recognise when such use may be inappropriate and to be aware of limitations;
i. develop an awareness of the relevance of mathematics to other fields of study, to the world of work and to society in general;
j. take increasing responsibility for their own learning and the evaluation of their own mathematical development.

Assessment Objectives

The assessment objectives are common to both AS and A Level. 'The schemes of assessment will assess candidates' ability to:

A01 recall, select and use their knowledge of mathematical facts, concepts and techniques in a variety of contexts;
A02 construct rigorous mathematical arguments and proofs through use of precise statements, logical deduction and inference and by the manipulation of mathematical expressions, including the construction of extended arguments for handling substantial problems presented in unstructured form;
A03 recall, select and use their knowledge of standard mathematical models to represent situations in the real world; recognise and understand given representations involving standard models; present and interpret results from such models in terms of the original situation, including discussion of the assumptions made and refinement of such models;
A04 comprehend translations of common realistic contexts into mathematics; use the results of calculations to make predictions, or comment on the context; and, where appropriate, read critically and comprehend longer mathematical arguments or examples of applications;
A05 use contemporary calculator technology and other permitted resources (such as formulae booklets or statistical tables) accurately and efficiently; understand when not to use such technology, and its limitations; give answers to appropriate accuracy.

The use of clear, precise and appropriate mathematical language is expected as an inherent part of the assessment of $A O 2$.

Scheme of Assessment Mathematics

Advanced Subsidiary (AS)

The Scheme of Assessment has a modular structure. The Advanced Subsidiary (AS) award comprises two compulsory core units and one optional Applied unit. All assessment is at AS standard.
For the written papers, each candidate will require a copy of the AQA Booklet of formulae and statistical tables issued for this specification.
7.1 Compulsory Assessment Units

Unit MPC1	Written Paper	1hour 30 minutes
$33^{1} / 3 \%$ of the total		75 marks
AS marks		

Core 1
All questions are compulsory. Calculators are not permitted.

Unit MPC2 \quad Written Paper	1 hour 30 minutes
$33^{1} / 3 \%$ of the total	75 marks
AS marks	
Core 2	
All questions are compulsory. A graphics calculator may be used.	

7.2 Optional Assessment Units

Unit MS1A $33^{1} / 3 \%$ of the total AS marks	Written Paper + Coursework	1 hour 15 minutes 60 marks
Statistics 1A The written paper co compulsory. A graph The coursework com required.	25% of the A ulator may be $8^{1} / 3 \%$ of the A	All questions are One task is
Unit MS1B 331/3\% of the total AS marks	Written Paper	1 hour 30 minutes 75 marks

Statistics 1B
All questions are compulsory. A graphics calculator may be used.

Unit MM1B $33^{1} / 3 \%$ of the total AS marks	Written Paper	1 hour 30 minutes 75 marks
Mechanics 1B All questions are compulsory. A graphics calculator may be used.		
Unit MD01 $33^{1} / 3 \%$ of the total AS marks	Written Paper	1 hour 30 minutes 75 marks
Decision 1 All questions are compulsory. A graphics calculator may be used.		

7.3 Weighting of Assessment Objectives for AS

The approximate relationship between the relative percentage weighting of the Assessment Objectives (AOs) and the overall Scheme of Assessment is shown in the following table:

Assessment Objectives	Unit Weightings (range \%)			Overall Weighting of AOs (range \%)
	MPC1	MPC2	Applied unit	
AO1	$14-16$	$12-14$	$6-10$	$32-40$
AO2	$14-16$	$12-14$	$6-10$	$32-40$
AO3	0	0	$10-12$	$10-12$
AO4	$2-4$	$2-4$	$2-4$	$6-12$
AO5	0	$2-4$	$3-5$	$5-9$
Overall Weighting ofUnits (\%)	$33^{1} / 3$	$33^{1 / 3}$	$33^{1 / 3}$	100 (maximum)

Candidates' marks for each assessment unit are scaled to achieve the correct weightings.

7.4 Progression to Advanced GCE in Mathematics

Unit results counted towards an AS award in Mathematics may also be counted towards an Advanced award in Mathematics. Candidates who have completed the units needed for the AS qualification and who have taken the additional units necessary are eligible for an Advanced award.

Scheme of Assessment Mathematics Advanced Level (AS + A2)

The Scheme of Assessment has a modular structure. The A Level award comprises four compulsory Core units, one optional Applied unit from the AS scheme of assessment, and one optional Applied unit either from the AS scheme of assessment or from the A2 scheme of assessment. See section 2.4 on page 8 for permitted combinations. For the written papers, each candidate will require a copy of the AQA Booklet of formulae and statistical tables issued for this specification.

8.1 AS Compulsory Assessment Units

Unit MPC1	Written Paper	1hour 30 minutes
$16^{2} /{ }_{3} \%$ of the total	75 marks	
A level marks		
Core 1		
All questions are compulsory. Calculators are not permitted.		
Unit MPC2 Written Paper $16^{2} / 3 \%$ of the total A level marks	75 marks	

Core 2
All questions are compulsory. A graphics calculator may be used.
8.2 AS Optional Assessment Units

Unit MS1A $16^{2} / 3 \%$ of the total A level marks	Written Paper + Coursework	1 hour 15 minutes 60 marks
Statistics 1A The written paper co questions are comp The coursework com required.	$12 \frac{1}{2} \%$ of th A graphics cal $4^{1} / 6 \%$ of the	marks. All ay be used. marks. One task is
Unit MS1B $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks

Statistics 1B

All questions are compulsory. A graphics calculator may be used.

Unit MM1B	Written Paper
$16^{2} / 3 \%$ of the total	1 hour 30 minutes
A level marks	75 marks
Mechanics 1B	
All questions are compulsory. A graphics calculator may be used.	

		Unit MD01 $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
		All questions are compulsory. A graphics calculator may be used.		
8.3	A2 Compulsory Assessment Units	Unit MPC3 $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
		Core 3 All questions are	ry. A graphics	or may be used.
		Unit MPC4 $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
		Core 4 All questions are	ry. A graphic	or may be used.
8.4	A2 Optional Assessment Units	Unit MS2B $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
		Statistics 2 All questions are com	ry. A graphics	or may be used.
		Unit MM2B $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
		Mechanics 2 All questions are com	ry. A graphics	or may be used.
		Unit MD02 $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
		Decision 2 All questions are	ry. A graphics	or may be used.
8.5	Synoptic Assessment	The GCE Advanced specific Criteria state synoptic assessment marks). Synoptic assessment understanding of the subject. It involves the understanding and sk course, focusing on the earlier stages of the coun understanding conne mathematics. The requirement for assessment in: Core There is no restrictio	diary and Advan A Level specificat senting at least 20 hematics addres ections between licit drawing tog arned in different and application to the solution of in this way is in synoptic assessm 3, Core 4. when synoptic un	el Qualificationust include the total A Level didates' telements of the f knowledge, of the A level hods developed at ems. Making and o learning net by synoptic be taken.

8.6 Weighting of Assessment

Objectives for A Level

The approximate relationship between the relative percentage weighting of the Assessment Objectives (AOs) and the overall Scheme of Assessment is shown in the following table.

A Level Assessment Units (AS + A2)

Assessment Objectives	Unit Weightings (range \%)						Overall Weighting of AOs (range \%)
	MPC1	MPC2	Applied unit	MPC3	MPC4	Applied unit	
AO1	7-8	6-7	3-5	6-7	6-7	3-5	32-40
AO2	7-8	6-7	3-5	6-7	6-7	3-5	32-40
AO3	0	0	5-6	0	0	5-6	10-12
AO4	1-2	1-2	1-2	1-2	1-2	1-2	6-12
AO5	0	1-2	$1^{1 / 2-21 / 2}$	1-2	1-2	11/2-21/2	6-11
Overall Weighting of Units (\%)	$16^{2} / 3$	$16^{2} / 3$	$16^{2} / 3$	$16^{2} / 3$	$16^{2} / 3$	$16^{2} / 3$	100 (maximum)

Candidates' marks for each assessment unit are scaled to achieve the correct weightings.

Scheme of Assessment Pure Mathematics Advanced Subsidiary (AS) Advanced Level (AS and A2)

The Pure Mathematics Advanced Subsidiary (AS) award comprises three compulsory assessment units.
The Pure Mathematics A Level (AS and A2) award comprises five compulsory assessment units, and one optional unit chosen from three Further Pure assessment units.
For the written papers, each candidate will require a copy of the AQA Booklet of formulae and statistical tables issued for this specification.

9.1 AS Assessment Units

Unit MPC1	Written Paper	1hour 30 minutes
$33^{1} / 3 \%$ of the total		75 marks
AS marks		
Core 1		
All questions are compulsory. Calculators are not permitted.		
Unit MPC2	Written Paper	1hour 30 minutes
$33^{1} /{ }^{2} \%$ of the total		75 marks
AS marks		

Core 2
All questions are compulsory. A graphics calculator may be used.

Unit MFP1	Written Paper	1hour 30 minutes
$33^{1} / 3 \%$ of the total	75 marks	
AS marks		

Further Pure 1
All questions are compulsory. A graphics calculator may be used.

9.2 A2 Compulsory Assessment

 Units9.3 A2 Optional Assessment Units

Unit MFP2

 Written Paper 1hour 30 minutes$16^{2} / 3 \%$ of the total
A Level marks
75 marks

Further Pure 2

All questions are compulsory. A graphics calculator may be used.

Unit MFP3	Written Paper	1hour 30 minutes
$16^{2} / 3 \%$ of the total		75 marks
A Level marks		

Further Pure 3
All questions are compulsory. A graphics calculator may be used.

Unit MFP4	Written Paper	1hour 30 minutes
$16^{2} / 3 \%$ of the total		75 marks
A Level marks		

Further Pure 4

All questions are compulsory. A graphics calculator may be used.

9.4 Synoptic Assessment

The GCE Advanced Subsidiary and Advanced Level Qualificationspecific Criteria state that A Level specifications must include synoptic assessment (representing at least 20% of the total A Level marks).
Synoptic assessment in mathematics addresses candidates' understanding of the connections between different elements of the subject. It involves the explicit drawing together of knowledge, understanding and skills learned in different parts of the A level course, focusing on the use and application of methods developed at earlier stages of the course to the solution of problems. Making and understanding connections in this way is intrinsic to learning mathematics.
The requirement for 20% synoptic assessment is met by synoptic assessment in: Core 2, Core 3, Core 4.
There is no restriction on when synoptic units may be taken.

9.6 Weighting of Assessment

 Objectives for A LevelThe approximate relationship between the relative percentage weighting of the Assessment Objectives (AOs) and the overall Scheme of Assessment is shown in the following table:

Assessment Objectives	Unit Weightings (range \%)		Overall Weighting of AOs (range \%)
	MPC1	All other units	
AO1	$7-8$	$6-7$	$37-43$
AO2	$7-8$	0	0
AO3	0	$1-2$	$6-12$
AO4	$1-2$	$1-2$	$5-10$
AO5	0	$16^{2} / 3$	100 (maximum)
Overall Weighting ofUnits (\%)	$16^{2} / 3$		

Candidates' marks for each assessment unit are scaled to achieve the correct weightings.

Scheme of Assessment Further Mathematics Advanced Subsidiary (AS) Advanced Level (AS + A2)

Candidates for AS and/or A Level Further Mathematics are expected to have already obtained (or to be obtaining concurrently) an AS and/or A Level award in Mathematics.

The Advanced Subsidiary (AS) award comprises three units chosen from the full suite of units in this specification, except that the Core units cannot be included. One unit must be chosen from MFP1, MFP2, MFP3 and MFP4. All three units can be at AS standard; for example, MFP1, MM1B and MS1A could be chosen. All three units can be in Pure Mathematics; for example, MFP1, MFP2 and MFP4 could be chosen.

The Advanced (A Level) award comprises six units chosen from the full suite of units in this specification, except that the Core units cannot be included. The six units must include at least two units from MFP1, MFP2, MFP3 and MFP4. All four of these units could be chosen. At least three of the six units counted towards A Level Further Mathematics must be at A2 standard.

Details of the units which can be used towards AS/A Level Mathematics or AS/A Level Further Mathematics are given in section 8. Details of the additional units available for Further Mathematics, but not Mathematics, are given in sections 10.1 and 10.2.

Units that contribute to an award in A Level Mathematics may not also be used for an award in Further Mathematics.

- Candidates who are awarded certificates in both A Level Mathematics and A Level Further Mathematics must use unit results from 12 different teaching modules.
- Candidates who are awarded certificates in both A Level Mathematics and AS Further Mathematics must use unit results from 9 different teaching modules.
- Candidates who are awarded certificates in both AS Mathematics and AS Further Mathematics must use unit results from 6 different teaching modules.
For the written papers, each candidate will require a copy of the AQA Booklet of formulae and statistical tables issued for this specification.

10.1 Further Mathematics Assessment Units (Pure)

Further Pure 1
All questions are compulsory. A graphics calculator may be used.

Unit MFP2	Written Paper	1hour 30 minutes
$33^{1} / 3 \%$ of the total		
AS marks		
$16^{2} / 3 \%$ marks		
A level marks total		

Further Pure 2
All questions are compulsory. A graphics calculator may be used.

Unit MFP3	Written Paper	1hour 30 minutes
$33^{1} / 3 \%$ of the total		75 marks
AS marks		
$16^{2} / 3 \%$ of the total		
A level marks		

Further Pure 3
All questions are compulsory. A graphics calculator may be used.

Unit MFP4	Written Paper	1 hour 30 minutes 75 marks
$33^{1} / 3 \%$ of the total		
AS marks		
$16^{2} / 3 \%$ of the total		
A level marks		
Further Pure 4		
All questions are compulsory. A graphics calculator may be used.		
Unit MS03	Written Paper	1 hour 30 minutes
$33^{1} / 3 \%$ of the total		75 marks
AS marks		
$16^{2} / 3 \%$ of the total		
A level marks		

Statistics 3

All questions are compulsory. A graphics calculator may be used.

Unit MSO4	Written Paper
$33^{1} / 3 \%$ of the total	75 marks
AS marks	
$16^{2} / 3 \%$ minutes	
A level marks	

Statistics 4

All questions are compulsory. A graphics calculator may be used.

Unit MM03 $33^{1} / 3 \%$ of the total AS marks $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
Mechanics 3 All questions are compulsory. A graphics calculator may be used.		
Unit MM04 $33^{1} / 3 \%$ of the total AS marks $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
Mechanics 4 All questions are compulsory. A graphics calculator may be used.		
Unit MM05 $33^{1} / 3 \%$ of the total AS marks $16^{2} / 3 \%$ of the total A level marks	Written Paper	1 hour 30 minutes 75 marks
Mechanics 5 All questions are compulsory. A graphics calculator may be used.		

10.3 Weighting of Assessment Objectives

The approximate relationship between the relative percentage weighting of the Assessment Objectives (AOs) and the overall Scheme of Assessment is shown in the following tables:

Further Mathematics AS

Assessment Objectives	Unit Weightings (range \%)		OverallWeighting ofAOs (range \%)
	Further Pure Units	Applied Units	
AO1	$12 \quad 14$	$6 \quad 10$	2442
AO2	$12 \quad 14$	$6 \quad 10$	2442
AO3	0	$10 \quad 12$	036
AO4	24	24	6-12
AO5	24	35	6-14
Overall Weighting of Units (\%)	$33^{1 / 3}$	$33^{1 / 3}$	100 (maximum)

Further Mathematics Advanced

Assessment Objectives	Unit Weightings (range \%)		$\begin{gathered} \text { Overall } \\ \text { Weighting of } \\ \text { AOs (range \%) } \\ \hline \end{gathered}$
	Further Pure Units	Applied Units	
AO1	67	35	2438
AO2	67	35	$24 \quad 38$
AO3	0	56	$10 \quad 24$
AO4	12	12	$6 \quad 12$
AO5	12	$11 / 2 \quad 21 / 2$	$7 \quad 14$
Overall Weighting of Units (\%)	$16^{2} / 3$	$16^{2} / 3$	100 (maximum)

Subject Content

Summary of Subject Content

11.1 Pure Core Modules

AS MODULE - Pure Core 1

Algebra
Coordinate Geometry
Differentiation
Integration

AS MODULE - Pure Core 2

Algebra and Functions
Sequences and Series
Trigonometry
Exponentials and logarithms
Differentiation
Integration

A2 MODULE - Pure Core 3

Algebra and Functions
Trigonometry
Exponentials and Logarithms
Differentiation
Integration
Numerical Methods

A2 MODULE - Pure Core 4

Algebra and Functions
Coordinate Geometry in the (x, y) plane
Sequences and Series
Trigonometry
Exponentials and Logarithms
Differentiation and Integration
Vectors

11.2 Further Pure Modules

AS MODULE - Further Pure 1

Algebra and Graphs
Complex Numbers
Roots and Coefficients of a quadratic equation
Series
Calculus
Numerical Methods
Trigonometry
Matrices and Transformations

A2 MODULE - Further Pure 2

Roots of Polynomials Complex Numbers
De Moivre's Theorem
Proof by Induction
Finite Series
The Calculus of Inverse Trigonometrical Functions
Hyperbolic Functions
Arc Length and Area of surface of revolution about the x-axis

A2 MODULE - Further Pure 3

Series and Limits
Polar Coordinates
Differential Equations
Differential Equations - First Order
Differential Equations - Second Order

A2 MODULE - Further Pure 4

Vectors and Three-Dimensional Coordinate Geometry
Matrix Algebra
Solution of Linear Equations
Determinants
Linear Independence

11.3 Statistics

AS MODULE - Statistics 1

Numerical Measures
Probability
Binomial Distribution
Normal Distribution
Estimation
Correlation and Regression

A2 MODULE - Statistics 2

Discrete Random Variables
Poisson Distribution
Continuous Random Variables
Estimation
Hypothesis Testing
Chi-Square $\left(\mathcal{X}^{2}\right)$ Contingency Table Tests

A2 MODULE - Statistics 3

Further Probability
Linear Combinations of Random Variables
Distributional Approximations
Estimation
Hypothesis Testing

A2 MODULE - Statistics 4

Geometric and Exponenential Distributions
Estimators
Estimation
Hypothesis Testing
Chi-Squared $\left(\chi^{2}\right)$ Goodness of Fit Tests

11.4 Mechanics

AS MODULE - Mechanics 1

Mathematical Modelling
Kinematics in One and Two Dimensions
Statics and Forces
Momentum
Newton's Laws of Motion
Connected Particles
Projectiles

A2 MODULE - Mechanics 2

Mathematical Modelling
Moments and Centres of Mass
Kinematics
Newton's Laws of Motion
Application of Differential Equations
Uniform Circular Motion
Work and Energy
Vertical Circular Motion

A2 MODULE - Mechanics 3

Relative Motion
Dimensional Analysis
Collisions in one dimension
Collisions in two dimensions
Further Projectiles
Projectiles on Inclined Planes
A2 MODULE - Mechanics 4
Moments
Frameworks
Vector Product and Moments
Centres of mass by Integration for Uniform Bodies
Moments of Inertia
Motion of a Rigid Body about a Fixed Axis
A2 MODULE - Mechanics 5
Simple Harmonic Motion
Forced and Damped Harmonic Motion
Stability
Variable Mass Problems
Motion in a Plane using Polar Coordinates
11.5 Decision

AS MODULE - Decision 1
Simple Ideas of Algorithms
Graphs and Networks
Spanning Tree Problems
Matchings
Shortest Paths in Networks
Route Inspection Problem
Travelling Salesperson Problem
Linear Programming
Mathematical Modelling
A2 MODULE - Decision 2
Critical Path Analysis
Allocation
Dynamic Programming
Network Flows
Linear Programming
Game Theory for Zero Sum Games
Mathematical Modelling

AS Module
 Core 1

Candidates will be required to demonstrate:
a. construction and presentation of mathematical arguments through appropriate use of logical deduction and precise statements involving correct use of symbols and appropriate connecting language;
b. correct understanding and use of mathematical language and grammar in respect of terms such as 'equals', 'identically equals', 'therefore', 'because', 'implies', 'is implied by', 'necessary', 'sufficient' and notation such as $\therefore, \Rightarrow, \Leftarrow$ and \Leftrightarrow.

Candidates are not allowed to use a calculator in the assessment unit for this module.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

Quadratic Equations $a x^{2}+b x+c=0$ has roots $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Circles A circle, centre (a, b) and radius r, has equation
$(x-a)^{2}+(y-b)^{2}=r^{2}$

Differentiation
function derivative $a n x^{n-1} \quad n$ is a whole number
$\mathrm{f}(x)+\mathrm{g}(x)$
$\mathrm{f}^{\prime}(x)+\mathrm{g}^{\prime}(x)$
Integration function
$a x^{n}$
$\mathrm{f}^{\prime}(x)+\mathrm{g}^{\prime}(x) \quad \mathrm{f}(x)+\mathrm{g}(x)+c$
integral
$\frac{a}{n+1} x^{n+1}+c \quad n$ is a whole number

Area Area under a curve $=\int_{a}^{b} y \mathrm{~d} x(y \geqslant 0)$
12.1 Algebra

Use and manipulation of surds.

To include simplification and rationalisation of the denominator of a fraction.
$\operatorname{Eg} \sqrt{12}+2 \sqrt{27}=8 \sqrt{3} ; \frac{1}{\sqrt{2}-1}=\sqrt{2}+1 ; \frac{2 \sqrt{3}+\sqrt{2}}{3 \sqrt{2}+\sqrt{3}}=\frac{\sqrt{6}}{3}$

Quadratic functions and their graphs.
The discriminant of a quadratic function.
Factorisation of quadratic polynomials.
Completing the square.
Solution of quadratic equations.

Simultaneous equations, e.g. one linear and one quadratic, analytical solution by substitution.
Solution of linear and quadratic inequalities.
Algebraic manipulation of polynomials, including expanding brackets and collecting like terms.
Simple algebraic division.

Use of the Remainder
Theorem.

Use of the Factor Theorem.

Graphs of functions; sketching curves defined by simple equations.

Geometrical interpretation of algebraic solution of equations and use of intersection points of graphs of functions to solve equations.

To include reference to the vertex and line of symmetry of the graph.

To include the conditions for equal roots, for distinct real roots and for no real roots
Eg factorisation of $2 x^{2}+x-6$
$\operatorname{Eg} x^{2}+6 x-1=(x+3)^{2}-10 ; \quad 2 x^{2}-6 x+2=2(x-1.5)^{2}-2.5$
Use of any of factorisation, $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ or completing the square will be accepted.
$\operatorname{Eg} 2 x^{2}+x \geqslant 6$

Applied to a quadratic or a cubic polynomial divided by a linear term of the form $(x+a)$ or $(x-a)$ where a is a small whole number. Any method will be accepted, e.g. by inspection, by equating coefficients or by formal division e.g. $\frac{x^{3}-x^{2}-5 x+2}{x+2}$.

Knowledge that when a quadratic or cubic polynomial $\mathrm{f}(x)$ is divided by $(x-a)$ the remainder is $\mathrm{f}(a)$ and, that when $\mathrm{f}(a)=0$, then $(x-a)$ is a factor and vice versa.

Greatest level of difficulty as indicated by $x^{3}-5 x^{2}+7 x-3$, i.e. a cubic always with a factor $(x+a)$ or $(x-a)$ where a is a small whole number but including the cases of three distinct linear factors, repeated linear factors or a quadratic factor which cannot be factorized in the real numbers.

Linear, quadratic and cubic functions. The $\mathrm{f}(x)$ notation may be used but only a very general idea of the concept of a function is required. Domain and range are not included.
Graphs of circles are included.
Interpreting the solutions of equations as the intersection points of graphs and vice versa.

Knowledge of the effect of translations on graphs and their equations.
12.2 Coordinate Geometry

Equation of a straight line, including the forms
$y-y_{1}=m\left(x-x_{1}\right)$ and
$a x+b y+c=0$.
Conditions for two straight lines to be parallel or perpendicular to each other.
Coordinate geometry of the circle.

The equation of a circle in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2} .
$$

The equation of the tangent and normal at a given point to a circle.
The intersection of a straight line and a curve.

To include problems using gradients, mid-points and the distance between two points.
The form $y=m x+c$ is also included.

Knowledge that the product of the gradients of two perpendicular lines is -1 .

Candidates will be expected to complete the square to find the centre and radius of a circle where the equation of the circle is for example given as $x^{2}+4 x+y^{2}-6 y-12=0$.
The use of the following circle properties is required:
(i) the angle in a semicircle is a right angle;
(ii) the perpendicular from the centre to a chord bisects the chord;
(iii) the tangent to a circle is perpendicular to the radius at its point of contact.
Implicit differentiation is not required. Candidates will be expected to use the coordinates of the centre and a point on the circle or of other appropriate points to find relevant gradients.
Using algebraic methods. Candidates will be expected to interpret the geometrical implication of equal roots, distinct real roots or no real roots. Applications will be to either circles or graphs of quadratic functions.
12.3 Differentiation

The derivative of $\mathrm{f}(x)$ as the gradient of the tangent to the graph of $y=\mathrm{f}(x)$ at a point; the gradient of the tangent as a limit; interpretation as a rate of change.
Differentiation of polynomials.
Applications of differentiation to gradients, tangents and normals, maxima and minima and stationary points, increasing and decreasing functions.
Second order derivatives.

The notations $\mathrm{f}^{\prime}(x)$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ will be used.
A general appreciation only of the derivative when interpreting it is required. Differentiation from first principles will not be tested.

Questions will not be set requiring the determination of or knowledge of points of inflection. Questions may be set in the form of a practical problem where a function of a single variable has to be optimised.

Application to determining maxima and minima.
12.4 Integration

Indefinite integration as the reverse of differentiation Integration of polynomials. Evaluation of definite integrals. Interpretation of the definite integral as the area under a curve.

Integration to determine the area of a region between a curve and the x-axis. To include regions wholly below the x-axis, i.e. knowledge that the integral will give a negative value.
Questions involving regions partially above and below the x-axis will not be set. Questions may involve finding the area of a region bounded by a straight line and a curve, or by two curves.

AS Module
 Core 2

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the module Core 1.
Candidates will be required to demonstrate:
a. Construction and presentation of mathematical arguments through appropriate use of logical deduction and precise statements involving correct use of symbols and appropriate connecting language;
b. correct understanding and use of mathematical language and grammar in respect of terms such as 'equals', 'identically equals', 'therefore', 'because', 'implies', 'is implied by', 'necessary', 'sufficient' and notation such as \therefore, \Rightarrow, and \Leftrightarrow.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

Trigonometry In the triangle $A B C$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
area $=\frac{1}{2} a b \sin C$
arc length of a circle, $l=r \theta$
area of a sector of a circle, $A=\frac{1}{2} r^{2} \theta$
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
Laws of Logarithms $\log _{a} x+\log _{a} y=\log _{a}(x y)$
$\log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right)$
$k \log _{a} x=\log _{a}\left(x^{k}\right)$
Differentiation Function derivative
$a x^{n} \quad n a x^{n-1}, \quad n$ is a rational number
Integration
Function integral
$a x^{n} \quad \frac{a}{n+1} x^{n+1}, \quad n$ is a rational number, $n \neq-1$

13.1 Algebra and Functions

Laws of indices for all rational exponents.

Knowledge of the effect of simple transformations on the graph of $y=\mathrm{f}(x)$ as represented by
$y=a \mathrm{f}(x), y=\mathrm{f}(x)+a$, $y=\mathrm{f}(x+a), y=\mathrm{f}(a x)$.

Candidates are expected to use the terms reflection, translation and stretch in the x or y direction in their descriptions of these transformations.
Eg graphs of $y=\sin 2 x ; y=\cos \left(x+30^{\circ}\right) ; y=2^{x+3} ; y=2^{-x}$ Descriptions involving combinations of more than one transformation will not be tested.

13.2 Sequences and Series

Sequences, including those given by a formula for the nth term.
Sequences generated by a simple relation of the form $x_{n+1}=\mathrm{f}\left(x_{n}\right)$.

To include Σ notation for sums of series.

Arithmetic series, including the formula for the sum of the first n natural numbers.
The sum of a finite geometric series.
The sum to infinity of a convergent ($-1<r<1$)
geometric series.
The binomial expansion of $(1+x)^{n}$ for positive integer n.

Candidates should be familiar with the notation $|r|<1$ in this context.

To include the notations n ! and $\binom{n}{r}$. Use of Pascal's triangle or formulae to expand $(a+b)^{n}$ will be accepted.

13.3 Trigonometry

The sine and cosine rules.
The area of a triangle in the form $\frac{1}{2} a b \sin C$.

Degree and radian measure.
Arc length, area of a sector Knowledge of the formulae $l=r \theta, \quad A=\frac{1}{2} r^{2} \theta$. of a circle.

Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.
Knowledge and use of
$\tan \theta=\frac{\sin \theta}{\cos \theta}$,
and $\sin ^{2} \theta+\cos ^{2} \theta=1$.
Solution of simple trigonometric equations in a given interval of degrees or radians.

The concepts of odd and even functions are not required.

Maximum level of difficulty as indicated by $\sin 2 \theta=-0.4$,
$\sin \left(\theta-20^{\circ}\right)=0.2,2 \sin \theta-\cos \theta=0$ and $2 \sin ^{2} \theta+5 \cos \theta=4$.
13.4 Exponentials and logarithms
$y=a^{x}$ and its graph.
Logarithms and the laws of logarithms.

Using the laws of indices where appropriate.
$\log _{a} x+\log _{a} y=\log _{a}(x y) ; \quad \log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right) ;$
$k \log _{a} x=\log _{a}\left(x^{k}\right)$.
The equivalence of $y=a^{x}$ and $x=\log _{a} y$.
The solution of equations of the form $a^{x}=b$.

13.5 Differentiation

Differentiation of x^{n}, where n is a rational number, and related sums and differences.

Use of a calculator logarithm function to solve for example $3^{2 x}=2$. i.e. expressions such as $x^{\frac{3}{2}}+\frac{3}{x^{2}}$, including terms which can be expressed as a single power such as $x \sqrt{x}$.
Applications to techniques included in module Core 1.
13.6 Integration

Integration of $x^{n}, n \neq-1$, and related sums and differences.

Approximation of the area under a curve using the trapezium rule.
i.e. expressions such as $x^{\frac{3}{2}}+2 x^{-\frac{1}{2}}$ or $\frac{x+2}{\sqrt{x}}=x^{\frac{1}{2}}+2 x^{-\frac{1}{2}}$.

Applications to techniques included in module Core 1.
The term 'ordinate' will be used. To include a graphical determination of whether the rule over- or under- estimates the area and improvement of an estimate by increasing the number of steps.

A2 Module Core 3

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1 and Core 2. Candidates will be required to demonstrate:
a. construction and presentation of mathematical arguments through appropriate use of logical deduction and precise statements involving correct use of symbols and appropriate connecting language;
b. correct understanding and use of mathematical language and grammar in respect of terms such as 'equals', 'identically equals', 'therefore', 'because', 'implies', 'is implied by', 'necessary', 'sufficient' and notation such as $\therefore, \Rightarrow, \Leftarrow$ and \Leftrightarrow;
c. methods of proof, including proof by contradiction and disproof by counter-example.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

$$
\begin{array}{lll}
\text { Trigonometry } & \sec ^{2} A=1+\tan ^{2} A \\
& \operatorname{cosec}^{2} A=1+\cot ^{2} A \\
\text { Differentiation } & & \begin{array}{l}
\text { function } \\
\mathrm{e}^{k x}
\end{array} \\
& \frac{\text { derivative }}{k \mathrm{e}^{k x}} \\
& \ln x & \frac{1}{x} \\
& \sin k x & k \cos k x \\
& \cos k x & -k \sin k x \\
& \mathrm{f}(x) \mathrm{g}(x) & \mathrm{f}^{\prime}(x) \mathrm{g}(x)+\mathrm{f}(x) \mathrm{g}^{\prime}(x) \\
& \mathrm{f}(\mathrm{~g}(x)) & \mathrm{f}^{\prime}(\mathrm{g}(x)) \mathrm{g}^{\prime}(x)
\end{array}
$$

Volumes Volume of solid of revolution:
About the x-axis: $\quad V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$
About the y-axis: $\quad V=\int_{c}^{d} \pi x^{2} \mathrm{~d} y$

Integration Function
$\cos k x$
$\sin k x \quad-\frac{1}{k} \cos k x+c$
$\mathrm{e}^{k x} \quad \frac{1}{k} \mathrm{e}^{k x}+c$
$\frac{1}{x} \quad \ln |x|+c \quad(x \neq 0)$
$\mathrm{f}^{\prime}(\mathrm{g}(x)) \mathrm{g}^{\prime}(x) \quad \mathrm{f}(\mathrm{g}(x))+c$

14.1 Algebra and Functions

Definition of a function.
Domain and range of a function.

Composition of functions. $\quad \mathrm{fg}(x)=\mathrm{f}(\mathrm{g}(x))$

Inverse functions and their graphs.
The modulus function.

Combinations of the transformations on the graph of $y=\mathrm{f}(x)$ as represented by $y=a \mathrm{f}(x), y=\mathrm{f}(x)+a$, $y=\mathrm{f}(x+a), y=\mathrm{f}(a x)$.

Notation such as $\mathrm{f}(x)=x^{2}-4$ may be used.
Domain may be expressed as $x>1$ for example and range may be expressed as $\mathrm{f}(x)>-3$ for example.

$$
\mathrm{fg}(x)=\mathrm{f}(\mathrm{~g}(x))
$$

The notation f^{-1} will be used for the inverse of f .
To include reflection in $y=x$.
To include related graphs and the solution from them of inequalities such as $|x+2|<3|x|$ using solutions of $|x+2|=3|x|$.
For example the transformations of: e^{x} leading to $\mathrm{e}^{2 x}-1$;
$\ln x$ leading to $2 \ln (x-1) ; \quad \sec x$ leading to $3 \sec 2 x$
Transformations on the graphs of functions included in modules Core 1 and Core 2.

14.2 Trigonometry

Knowledge of $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ functions.
Understanding of their domains and graphs.

Knowledge of secant,

 cosecant and cotangent. Their relationships to cosine, sine and tangent functions. Understanding of their domains and graphs.Knowledge and use of
$1+\tan ^{2} x=\sec ^{2} x$, $1+\cot ^{2} x=\operatorname{cosec}^{2} x$.

Knowledge that
$-\frac{\pi}{2} \leqslant \sin ^{-1} x \leqslant \frac{\pi}{2} \quad ; 0 \leqslant \cos ^{-1} x \leqslant \pi ;-\frac{\pi}{2}<\tan ^{-1} x<\frac{\pi}{2}$
The graphs of these functions as reflections of the relevant parts of trigonometric graphs in $y=x$ are included. The addition formulae for inverse functions are not required.

14.3 Exponentials and Logarithms

The function e^{x} and its graph.

The function $\ln x$ and its graph; $\ln x$ as the inverse function of e^{x}.

14.4 Differentiation

Differentiation of e^{x}, $\ln x, \sin x, \cos x, \tan x$, and linear combinations of these functions.

Differentiation using the product rule, the quotient rule, the chain rule and by the use of $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\frac{\mathrm{~d} x}{\mathrm{~d} y}}$.

Eg $x^{2} \ln x ; \mathrm{e}^{3 x} \sin x ; \frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1} ; \frac{2 x+1}{3 x-2}$
Eg A curve has equation $x=y^{2}-4 y+1$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=1$.

14.5 Integration

Integration of $\mathrm{e}^{x}, \frac{1}{x}$,
$\sin x, \cos x$.
Simple cases of integration:
by inspection or substitution;
$\operatorname{Eg} \int \mathrm{e}^{-3 x} \mathrm{~d} x ; \int \sin 4 x \mathrm{~d} x ; \int x \sqrt{1+x^{2}} \mathrm{~d} x$
by substitution;
and integration by parts.
These methods as the reverse processes of the chain and product rules respectively.

Eg $\int x(2+x)^{6} \mathrm{~d} x ; \int x \sqrt{2 x-3} \mathrm{~d} x$
Eg $\int x \mathrm{e}^{2 x} \mathrm{~d} x ; \int x \sin 3 x \mathrm{~d} x ; \int x \ln x \mathrm{~d} x$
Including the use of $\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln |\mathrm{f}(x)|+c$ by inspection or substitution.

Evaluation of a volume of
The axes of revolution will be restricted to the x-axis and y-axis. revolution.
14.6 Numerical Methods

Location of roots of $\mathrm{f}(x)=0$
by considering changes of sign of $\mathrm{f}(x)$ in an interval of x in which $\mathrm{f}(x)$ is continuous.

Approximate solutions of equations using simple iterative methods, including recurrence relations of the form $x_{n+1}=\mathrm{f}\left(x_{n}\right)$.

Numerical integration of functions using the midordinate rule and Simpson's Rule.

Rearrangement of equations to the form $x=\mathrm{g}(x)$.
Staircase and cobweb diagrams to illustrate the iteration and their use in considerations of convergence.

To include improvement of an estimate by increasing the number of steps.

A2 Module Core 4

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1, Core 2 and Core 3.

Candidates will be required to demonstrate:
a. construction and presentation of mathematical arguments through appropriate use of logical deduction and precise statements involving correct use of symbols and appropriate connecting language;
b. correct understanding and use of mathematical language and grammar in respect of terms such as 'equals', 'identically equals', 'therefore', 'because', 'implies', 'is implied by', 'necessary', 'sufficient' and notation such as $\therefore, \Rightarrow, \Leftarrow$ and \Leftrightarrow;
c. methods of proof, including proof by contradiction and disproof by counter-example.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

Trigonometry $\sin 2 A=2 \sin A \cos A$
$\cos 2 A=\left\{\begin{array}{l}\cos ^{2} A-\sin ^{2} A \\ 2 \cos ^{2} A-1 \\ 1-2 \sin ^{2} A\end{array}\right.$
$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$
$a \cos \theta+b \sin \theta=R \sin (\theta+\alpha)$, where $R=\sqrt{a^{2}+b^{2}}$ and $\tan \alpha=\frac{a}{b}$
$a \cos \theta-b \sin \theta=R \cos (\theta+\alpha)$, where $R=\sqrt{a^{2}+b^{2}}$ and $\tan \alpha=\frac{b}{a}$
Vectors
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \cdot\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=x a+y b+z c=\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)\left(\sqrt{a^{2}+b^{2}+c^{2}}\right) \cos \theta$
15.1 Algebra and Functions

Rational functions.
Simplification of rational expressions including factorising and cancelling.

Including use of the Factor and Remainder Theorem for divisors of the form $(a x+b)$.
Expressions of the type $\frac{x^{2}-4 x}{x^{2}-5 x+4}=\frac{x(x-4)}{(x-4)(x-1)}=\frac{x}{x-1}$

Algebraic division.

Partial fractions

(denominators not more complicated than repeated linear terms).

Any method will be accepted, e.g. by inspection, by equating coefficients or by formal division.
$\frac{3 x+4}{x-1}=3+\frac{7}{x-1} \quad ; \quad \frac{2 x^{3}-3 x^{2}-2 x+2}{x-2}=2 x^{2}+x+\frac{2}{x-2} \quad ;$
$\frac{2 x^{2}}{(x+5)(x-3)}=2-\frac{4 x-30}{(x+5)(x-3)}$ by using the given identity
$\frac{2 x^{2}}{(x+5)(x-3)}=\mathrm{A}+\frac{\mathrm{B} x+\mathrm{C}}{(x+5)(x-3)}$
Greatest level of difficulty $\frac{3+2 x^{2}}{(2 x+1)(x-3)^{2}}$
Irreducible quadratic factors will not be tested.
15.2 Coordinate Geometry in the (x, y) plane

Cartesian and parametric equations of curves and conversion between the two forms.

15.3 Sequences and Series

Binomial series for any rational n.

Series expansion of rational functions including the use of partial fractions

Eg $x=t^{2}, y=2 t ; x=a \cos \theta, y=b \sin \theta ;$
$x=\frac{1}{t}, y=3 t ; x=t+\frac{1}{t}, y=t-\frac{1}{t} \Rightarrow(x+y)(x-y)=4$.

Expansion of $(1+x)^{n},|x|<1$.
Greatest level of difficulty $(2+3 x)^{-2}=\frac{1}{4}\left(1+\frac{3 x}{2}\right)^{-2}$, expansion valid for $|x|<\frac{2}{3}$
Greatest level of difficulty $\frac{3+2 x^{2}}{(2 x+1)(x-3)^{2}}$.

15.4 Trigonometry

Use of formulae for $\sin (A \pm B), \cos (A \pm B)$ and $\tan (A \pm B)$ and of expressions for $a \cos \theta+b \sin \theta$ in the equivalent forms of $r \cos (\theta \pm \alpha)$ or $r \sin (\theta \pm \alpha)$.

Knowledge and use of double angle formulae.

Use in simple identities.

Solution of trigonometric equations in a given interval
$\operatorname{Eg} 2 \sin x+3 \cos x=1.5,-180^{\circ}<x \leq 180^{\circ}$

Knowledge that

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x \\
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x \\
\tan 2 x & =\frac{2 \tan x}{1-\tan ^{2} x}
\end{aligned}
$$

is expected.
Use in simple identities.
For example, $\sin 3 x=\sin (2 x+x)=\sin x\left(3-4 \sin ^{2} x\right)$
Solution of trigonometric equations in a given interval.
For example, solve $3 \sin 2 x=\cos x, 0 \leq x \leq 4 \pi$.
Use in integration. For example $\int \cos ^{2} x \mathrm{~d} x$

15.5 Exponentials and Logarithms

Exponential growth and decay.

15.6 Differentiation and

 IntegrationFormation of simple differential equations.
Analytical solution of simple first order differential equations with separable variables.

Differentiation of simple functions defined implicitly or parametrically.
Equations of tangents and normals for curves specified implicitly or in parametric form.

Simple cases of integration using partial fractions.

The use of exponential functions as models.

To include the context of growth and decay.

To include applications to practical problems.

The second derivative of curves defined implicitly or parametrically is not required.

Greatest level of difficulty $\int \frac{(1-4 x)}{(3 x-4)(x+3)^{2}} \mathrm{~d} x$;
$\int \frac{x^{2}}{(x+5)(x-3)} \mathrm{d} x$.

15.7 Vectors

Vectors in two and three dimensions.

Magnitude of a vector.
Algebraic operations of vector addition and multiplication by scalars, and their geometrical interpretations.

Position vectors.
The distance between two points.

Vector equations of lines.

The scalar product. Its use for calculating the angle between two lines.

Column vectors will be used in questions but candidates may use $\mathfrak{i}, \mathfrak{j}$, \mathbf{k} notation if they wish.

The result $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$
Parallel vectors

Equations of lines in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$. Eg $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]+t\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$
To include the intersection of two straight lines in two and three dimensions. Parallel lines. Skew lines in three dimensions.
To include finding the coordinates of the foot of the perpendicular from a point to a line and hence the perpendicular distance from a point to a line.

AS Module Further Pure 1

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1 and Core 2. Candidates will also be expected to know for section 16.6 that the roots of an equation $\mathrm{f}(x)=0$ can be located by considering changes of sign of $\mathrm{f}(x)$ in an interval of x in which $\mathrm{f}(x)$ is continuous.

Candidates may use relevant formulae included in the formulae booklet without proof.
16.1 Algebra and Graphs Graphs of rational functions of the form
$\frac{a x+b}{c x+d}, \frac{a x+b}{c x^{2}+d x+e}$ or $\frac{x^{2}+a x+b}{x^{2}+c x+d}$.

Sketching the graphs.
Finding the equations of the asymptotes which will always be parallel to the coordinate axes.

Finding points of intersection with the coordinate axes or other straight lines.

Solving associated inequalities.
Using quadratic theory (not calculus) to find the possible values of the function and the coordinates of the maximum or minimum points on the graph.
Eg for $y=\frac{x^{2}+2}{x^{2}-4 x}, y=k \Rightarrow x^{2}+2=k x^{2}-4 k x$,
which has real roots if $16 k^{2}+8 k-8 \geq-0$, i.e. if $k \leqslant-1$ or $k \geqslant \frac{1}{2}$; stationary points are $(1,-1)$ and $\left(-2, \frac{1}{2}\right)$.

Sketching the graphs.
Finding points of intersection with the coordinate axes or other straight lines. Candidates will be expected to interpret the geometrical implication of equal roots, distinct real roots or no real roots.

Knowledge of the effects on these equations of single transformations of these graphs involving translations, stretches parallel to the x-axis or y-axis, and reflections in the line $y=x$.
Including the use of the equations of the asymptotes of the hyperbolas given in the formulae booklet..
16.2 Complex Numbers

Non-real roots of quadratic equations.

Sum, difference and product of complex numbers in the form $x+\mathrm{i} y$.

Comparing real and imaginary parts.

Complex conjugates - awareness that non-real roots of quadratic equations with real coefficients occur in conjugate pairs.

Including solving equations eg $2 z+z^{*}=1+\mathrm{i}$ where z^{*} is the conjugate of z.

16.3 Roots and coefficients of a

 quadratic equationManipulating expressions involving $\alpha+\beta$ and $\alpha \beta$.
$\operatorname{Eg} \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
Forming an equation with roots α^{3}, β^{3} or $\frac{1}{\alpha}, \frac{1}{\beta}, \alpha+\frac{2}{\beta}, \beta+\frac{2}{\alpha}$ etc.
16.4 Series

Use of formulae for the sum of the squares and the sum of the cubes of the natural numbers.

16.5 Calculus

Finding the gradient of the tangent to a curve at a point, by taking the limit as h tends to zero of the gradient of a chord joining two points whose x-coordinates differ by h.
Evaluation of simple improper integrals.

16.6 Numerical Methods

Finding roots of equations by interval bisection, linear interpolation and the Newton-Raphson method.
Solving differential equations
of the form $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x)$
Reducing a relation to a linear law.

Eg to find a polynomial expression for
$\sum_{r=1}^{n} r^{2}(r+2)$ or $\sum_{r=1}^{n}\left(r^{2}-r+1\right)$.

The equation will be given as $y=\mathrm{f}(x)$, where $\mathrm{f}(x)$ is a simple polynomial such as $x^{2}-2 x$ or $x^{4}+3$.
E.g. $\int_{1}^{4} \frac{1}{\sqrt{x}} \mathrm{~d} x, \int_{4}^{\infty} x^{-\frac{3}{2}} \mathrm{~d} x$.

Graphical illustration of these methods.

Using a step-by-step method based on the linear approximations $y_{n+1} \approx y_{n}+h \mathrm{f}\left(x_{n}\right) ; x_{n+1}=x_{n}+h$, with given values for x_{0}, y_{0} and h.
E.g. $\frac{1}{x}+\frac{1}{y}=k ; y^{2}=a x^{3}+b ; \quad y=a x^{n} ; y=a b^{x}$

Use of logarithms to base 10 where appropriate.
Given numerical values of (x, y), drawing a linear graph and using it to estimate the values of the unknown constants.
16.7 Trigonometry

General solutions of trigonometric equations including use of exact values for the sine, cosine and
$\operatorname{Eg} \sin 2 x=\frac{\sqrt{3}}{2}, \cos \left(x+\frac{\pi}{6}\right)=-\frac{1}{\sqrt{2}}, \tan \left(\frac{\pi}{3}-2 x\right)=1$,
$\sin 2 x=0.3, \cos (3 x-1)=-0.2$
tangent of $\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$.
16.8 Matrices and Transformations
2×2 and 2×1 matrices; addition and subtraction, multiplication by a scalar. Multiplying a 2×2 matrix by a 2×2 matrix or by a 2×1 matrix. The identity matrix I for a 2×2 matrix.

Transformations of points in the $x-y$ plane represented by 2×2 matrices.

Transformations will be restricted to rotations about the origin, reflections in a line through the origin, stretches parallel to the x-axis and y-axis, and enlargements with centre the origin.
Use of the standard transformation matrices given in the formulae booklet.
Combinations of these transformations
e.g. $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right],\left[\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$

A2 Module
 Further Pure 2

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1, Core 2, Core 3, Core 4 and Further Pure 1.

Candidates may use relevant formulae included in the formulae booklet without proof except where proof is required in this module and requested in a question.

17.1 Roots of Polynomials

The relations between the roots and the coefficients of a polynomial equation; the occurrence of the non-real roots in conjugate pairs when the coefficients of the polynomial are real.

17.2 Complex Numbers

The Cartesian and polar coordinate forms of a complex number, its modulus, argument and conjugate. The sum, difference, product and quotient of two complex numbers.

The representation of a complex number by a point on an Argand diagram; geometrical illustrations.
Simple loci in the complex plane.
$x+\mathrm{i} y$ and $r(\cos \theta+\mathrm{i} \sin \theta)$.

The parts of this topic also included in module Further Pure 1 will be examined only in the context of the content of this module.

17.3 De Moivre's Theorem

De Moivre's theorem for integral n.

Use of $z+\frac{1}{z}=2 \cos \theta$ and $z-\frac{1}{z}=2 \mathrm{i} \sin \theta$, leading to, for example, expressing $\sin ^{5} \theta$ in terms of multiple angles and $\tan 5 \theta$ in term of powers of $\tan \theta$.
Applications in evaluating integrals, for example, $\int \sin ^{5} \theta \mathrm{~d} \theta$.

De Moivre's theorem; the nth The use, without justification, of the identity $\mathrm{e}^{\mathrm{ix}}=\cos x+\mathrm{i} \sin x$. roots of unity, the exponential form of a complex number.
Solutions of equations of the To include geometric interpretation and use, for example, in form $z^{n}=a+\mathrm{i} b$. expressing $\cos \frac{5 \pi}{12}$ in surd form.
17.4 Proof by Induction

Applications to sequences and series, and other problems.

Eg proving that $7^{n}+4^{n}+1$ is divisible by 6 , or
$(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta$ where n is a positive integer.
17.5 Finite Series

Summation of a finite series
by any method such as induction, partial fractions or differencing.

Eg $\sum_{r=1}^{n} r \cdot r!=\sum_{r=1}^{n}[(r+1)!-r!]$
17.6 The calculus of inverse trigonometrical functions

Use of the derivatives of $\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$ as given in the formulae booklet.
To include the use of the standard integrals
$\int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x ; \int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x$ given in the formulae booklet.

17.7 Hyperbolic Functions

Hyperbolic and inverse hyperbolic functions and their derivatives; applications to integration.

The proofs mentioned below require expressing hyperbolic functions in terms of exponential functions.
To include solution of equations of the form $a \sinh x+b \cosh x=c$. Use of basic definitions in proving simple identities.
Maximum level of difficulty:
$\sinh (x+y) \equiv \sinh x \cosh y+\cosh x \sinh y$.
The logarithmic forms of the inverse functions, given in the formulae booklet, may be required. Proofs of these results may also be required.
Proofs of the results of differentiation of the hyperbolic functions, given in the formula booklet, are included.
Knowledge, proof and use of:

$$
\begin{aligned}
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& 1-\tanh ^{2} x=\operatorname{sech}^{2} x \\
& \operatorname{coth}^{2} x-1=\operatorname{cosech}^{2} x
\end{aligned}
$$

Familiarity with the graphs of
$\sinh x, \cosh x, \tanh x, \sinh ^{-1} x, \cosh ^{-1} x, \tanh ^{-1} x$.
17.8 Arc length and Area of surface of revolution about the x-axis
Calculation of the arc length of a curve and the area of a surface of revolution using Cartesian or parametric coordinates.

Use of the following formulae will be expected:

$$
\begin{aligned}
& s=\int_{x_{1}}^{x_{2}}\left[1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right]^{\frac{1}{2}} \mathrm{~d} x=\int_{t_{1}}^{t_{2}}\left[\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}\right]^{\frac{1}{2}} \mathrm{~d} t \\
& S=2 \pi \int_{x_{1}}^{x_{2}} y\left[1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right]^{\frac{1}{2}} \mathrm{~d} x=2 \pi \int_{t_{1}}^{t_{2}} y\left[\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}\right]^{\frac{1}{2}} \mathrm{~d} t
\end{aligned}
$$

A2 Module
 Further Pure 3

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1, Core 2, Core 3, Core 4 and Further Pure 1.

Candidates may use relevant formulae included in the formulae booklet without proof.

18.1 Series and Limits

Maclaurin series

Expansions of $\mathrm{e}^{x}, \ln (1+x)$, $\cos x$ and $\sin x$ and $(1+x)^{n}$ for rational values of n.

Use of the range of values of x for which these expansions are valid, as given in the formulae booklet, is expected to determine the range of values for which expansions of related functions are valid;
e.g. $\ln \left(\frac{1+x}{1-x}\right) ;(1-2 x)^{\frac{1}{2}} \mathrm{e}^{x}$.

Knowledge and use, for
$k>0$, of $\lim x^{k} \mathrm{e}^{-x}$ as x
tends to infinity and $\lim x^{k} \ln x$ as x tends to zero.

Improper integrals.
E.g. $\int_{0}^{e} x \ln x \mathrm{~d} x, \int_{0}^{\infty} x \mathrm{e}^{-x} \mathrm{~d} x$.

Candidates will be expected to show the limiting processes used.
Use of series expansion to find limits.
E.g. $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{x} ; \lim _{x \rightarrow 0} \frac{\sin 3 x}{x} ; \lim _{x \rightarrow 0} \frac{x^{2} \mathrm{e}^{x}}{\cos 2 x-1} ; \lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$
18.2 Polar Coordinates

Relationship between polar
and Cartesian coordinates.
The convention $r>0$ will be used. The sketching of curves given by equations of the form $r=\mathrm{f}(\theta)$ may be required. Knowledge of the formula $\tan \phi=r \frac{\mathrm{~d} \theta}{\mathrm{~d} r}$ is not required.

Use of the formula
area $=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} \mathrm{~d} \theta$.
18.3 Differential Equations

The concept of a differential equation and its order.
Boundary values and initial conditions, general solutions and particular solutions.

The relationship of order to the number of arbitrary constants in the general solution will be expected.
18.4 Differential Equations First Order
Analytical solution of first order linear differential equations of the form
$\frac{\mathrm{d} y}{\mathrm{~d} x}+\mathrm{P} y=\mathrm{Q}$
To include use of an integrating factor and solution by complementary function and particular integral.
where P and Q are functions
of x.
Numerical methods for the solution of differential equations of the form
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)$.
Euler's formula and extensions to second order methods for this first order differential equation.

Formulae to be used will be stated explicitly in questions, but candidates should be familiar with standard notation such as used in Euler's formula $y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)$,
the formula $y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)$,
and the formula $y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)$
where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$.

18.5 Differential Equations -

 Second OrderSolution of differential equations of the form $a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=0$, where a, b and c are integers, by using an auxiliary equation whose roots may be real or complex.

Solution of equations of the form
$a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=\mathrm{f}(x)$
where a, b and c are integers
by finding the complementary function and a particular integral

Including repeated roots.
Finding particular integrals will be restricted to cases where $\mathrm{f}(x)$ is of the form $\mathrm{e}^{k x}, \cos k x, \sin k x$ or a polynomial of degree at most 4 , or a linear combination of any of the above.

Solution of differential equations of the form:
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+P \frac{\mathrm{~d} y}{\mathrm{~d} x}+Q y=R$
where P, Q, and R are functions of x. A substitution will always be given which reduces the differential equation to a form which can be directly solved using the other analytical methods in 18.4 and 18.5 of this specification or by separating variables.

Level of difficulty as indicated by:
(a) Given $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 y=x \quad$ use the substitution $\mathrm{x}=\mathrm{e}^{\mathrm{t}}$ to show that $\frac{\mathrm{d}^{2} y}{\mathrm{dt}^{2}}-\frac{\mathrm{d} y}{\mathrm{dt}}-2 y=\mathrm{e}^{t}$.

Hence find y in terms of t
Hence find y in terms of x
(b) $\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad$ use the substitution $u=\frac{\mathrm{d} y}{\mathrm{~d} x}$ to show that $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{2 x u}{1-x^{2}}$ and hence that $u=\frac{A}{1-x^{2}}$, where A is an arbitrary constant.

Hence find y in terms of x.

A2 Module
 Further Pure 4

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1, Core 2, Core 3, Core 4 and Further Pure 1.

Candidates may use relevant formulae included in the formulae booklet without proof.
19.1 Vectors and ThreeDimensional Coordinate Geometry

Definition and properties of the vector product. Calculation of vector products.

Calculation of scalar triple products.

Applications of vectors to two- and three-dimensional geometry, involving points, lines and planes.

Cartesian coordinate geometry of lines and planes. Direction ratios and direction cosines.

Including the use of vector products in the calculation of the area of a triangle or parallelogram.

Including the use of the scalar triple product in the calculation of the volume of a parallelepiped and in identifying coplanar vectors.
Proof of the distributive law and knowledge of particular formulae is not required.

Including the equation of a line in the form $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=0$.
Vector equation of a plane in the form $\mathbf{r} . \mathbf{n}=d$ or $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$. Intersection of a line and a plane.
Angle between a line and a plane and between two planes.
To include finding the equation of the line of intersection of two nonparallel planes.
Including the use of $l^{2}+m^{2}+n^{2}=1$ where l, m, n are the direction cosines.
Knowledge of formulae other than those in the formulae booklet will not be expected.

19.2 Matrix Algebra

Matrix algebra of up to 3×3
matrices, including the
inverse of a 2×2 or 3×3 matrix.
The identity matrix \mathbf{I} for 2×2 and 3×3 matrices.
Matrix transformations in two dimensions: shears.

Including non-square matrices and use of the results

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} \text { and }(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \text {. }
$$

Singular and non-singular matrices.

Candidates will be expected to recognise the matrix for a shear parallel to the x or y axis. Where the line of invariant points is not the x or y axis candidates will be informed that the matrix represents a shear. The combination of a shear with a matrix transformation from MFP1 is included.

Rotations, reflections and enlargements in three dimensions, and combinations of these.
Invariant points and invariant lines.
Eigenvalues and eigenvectors of 2×2 and 3×3 matrices.
Diagonalisation of 2×2 and 3×3 matrices.

Rotations about the coordinate axes only.
Reflections in the planes $x=0, y=0, z=0, x=y, x=z, y=z$ only.

Characteristic equations. Real eigenvalues only. Repeated eigenvalues may be included.
$\mathbf{M}=\mathbf{U D U}^{-1}$ where \mathbf{D} is a diagonal matrix featuring the eigenvalues and \mathbf{U} is a matrix whose columns are the eigenvectors.
Use of the result $\mathbf{M}^{n}=\mathbf{U} \mathbf{D}^{n} \mathbf{U}^{-1}$

19.3 Solution of Linear Equations

Consideration of up to three Any method of solution is acceptable. linear equations in up to three unknowns. Their geometrical interpretation and solution.

19.4 Determinants

Second order and third order determinants, and their manipulation.

Factorisation of determinants.

Calculation of area and volume scale factors for transformation representing enlargements in two and three dimensions.

19.5 Linear Independence

Linear independence and dependence of vectors.

Including the use of the result $\operatorname{det}(\mathbf{A B})=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}$, but a general treatment of products is not required.

Using row and/or column operations or other suitable methods.

AS Module Statistics 1

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formula, which is not included in the formulae booklet, but which may be required to answer questions.
$(\text { residual })_{i}=y_{i}-a-b x_{i}$
20.1 Numerical Measures

Standard deviation and variance calculated on ungrouped and grouped data.

Where raw data are given, candidates will be expected to be able to obtain standard deviation and mean values directly from calculators. Where summarised data are given, candidates may be required to use the formula from the booklet provided for the examination. It is advisable for candidates to know whether to divide by n or $(n-1)$ when calculating the variance; either divisor will be accepted unless a question specifically requests an unbiased estimate of a population variance.

Linear scaling. Artificial questions requiring linear scaling will not be set, but candidates should be aware of the effect of linear scaling on numerical measures.

Choice of numerical measures.

Candidates will be expected to be able to choose numerical measures, including mean, median, mode, range and interquartile range, appropriate to given contexts. Linear interpolation will not be required.

Probability

Elementary probability; the concept of a random event and its probability.

Addition law of probability. Mutually exclusive events.

Multiplication law of probability and conditional probability. Independent events.

Application of probability laws.

Assigning probabilities to events using relative frequencies or equally likely outcomes. Candidates will be expected to understand set notation but its use will not be essential.
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) ;$ two events only.
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$; two or more events.
$\mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)$.
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B \mid A)=\mathrm{P}(B) \times \mathrm{P}(A \mid B) ;$ two or more events.
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B) ;$ two or more events.
Only simple problems will be set that can be solved by direct application of the probability laws, by counting equally likely outcomes and/or the construction and the use of frequency tables or relative frequency (probability) tables. Questions requiring the use of tree diagrams or Venn diagrams will not be set, but their use will be permitted.

20.3 Binomial Distribution

Discrete random variables. Only an understanding of the concepts; not examined beyond binomial distributions.

Conditions for application of a binomial distribution.

Calculation of probabilities using formula.

Use of $\binom{n}{x}$ notation.
Use of tables.
Mean, variance and standard
Knowledge, but not derivations, will be required.
deviation of a binomial distribution.
20.4 Normal Distribution

Continuous random variables. Only an understanding of the concepts; not examined beyond normal distributions.

Properties of normal Shape, symmetry and area properties. Knowledge that approximately distributions. $\frac{2}{3}$ of observations lie within $\mu \pm \sigma$, and equivalent results.

Calculation of probabilities.
Transformation to the standardised normal distribution and use of the supplied tables. Interpolation will not be essential; rounding z-values to two decimal places will be accepted.

Mean, variance and standard deviation of a normal distribution.

To include finding unknown mean and/or standard deviation by making use of the table of percentage points. (Candidates may be required to solve two simultaneous equations.)
20.5 Estimation

Population and sample.

Unbiased estimators of a population mean and variance.

The sampling distribution of the mean of a random sample from a normal distribution.

A normal distribution as an approximation to the sampling distribution of the mean of a large sample from any distribution.

To include the terms 'parameter' and 'statistic'.
Candidates will be expected to understand the concept of a simple random sample. Methods for obtaining simple random samples will not be tested directly in the written examination.
\bar{X} and S^{2} respectively.

To include the standard error of the sample mean, $\frac{\sigma}{\sqrt{n}}$, and its estimator, $\frac{S}{\sqrt{n}}$.

Knowledge and application of the Central Limit Theorem.

Confidence intervals for the mean of a normal distribution with known variance.

Confidence intervals for the mean of a distribution using a normal approximation.

Inferences from confidence intervals.

Only confidence intervals symmetrical about the mean will be required.

Large samples only. Known and unknown variance.

Based on whether a calculated confidence interval includes or does not include a 'hypothesised' mean value.
20.6 Correlation and Regression

Calculation and interpretation of the product moment correlation coefficient.

Where raw data are given, candidates should be encouraged to obtain correlation coefficient values directly from calculators. Where summarised data are given, candidates may be required to use a formula from the booklet provided for the examination. Calculations from grouped data are excluded. Importance of checking for approximate linear relationship but no hypothesis tests. Understanding that association does not necessarily imply cause and effect.

Identification of response (dependent) and explanatory (independent) variables in regression.

Calculation of least squares regression lines with one explanatory variable. Scatter diagrams and drawing a regression line thereon.

Calculation of residuals.

Linear scaling.

Where raw data are given, candidates should be encouraged to obtain gradient and intercept values directly from calculators. Where summarised data are given, candidates may be required to use formulae from the booklet provided for the examination. Practical interpretation of values for the gradient and intercept. Use of line for prediction within range of observed values of explanatory variable. Appreciation of the dangers of extrapolation.

Use of $\left(\right.$ residual $_{i}=y_{i}-a-b x_{i}$. Examination of residuals to check plausibility of model and to identify outliers. Appreciation of the possible large influence of outliers on the fitted line.

Artificial questions requiring linear scaling will not be set, but candidates should be aware of the effect of linear scaling in correlation and regression.

A2 Module Statistics 2

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the module Statistics 1 and Core 1.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.
$\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$ and $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$
$\mathrm{P}(a<X<b)=\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x$
$\mathrm{P}($ Type I error $)=\mathrm{P}\left(\right.$ reject $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ true $)$ and
$\mathrm{P}($ Type II error $)=\mathrm{P}\left(\right.$ accept $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ false $)$
$E_{i j}=\frac{R_{i} \times C_{j}}{T}$ and $\boldsymbol{v}=($ rows -1$)($ columns -1$)$
Yates' correction (for 2×2 table) is $\chi^{2}=\sum \frac{\left(\left|O_{i}-E_{i}\right|-0.5\right)^{2}}{E_{i}}$
21.1 Discrete Random Variables

Discrete random variables and their associated probability distributions.

Mean, variance and standard deviation.

Mean, variance and standard deviation of a simple function of a discrete random variable.

The number of possible outcomes will be finite. Distributions will be given or easily determined in the form of a table or simple function.

Knowledge of the formulae
$\mathrm{E}(X)=\sum x_{i} p_{i}, \mathrm{E}(\mathrm{g}(X))=\sum \mathrm{g}\left(x_{i}\right) p_{i}, \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$, $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$ and $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$ will be expected.
$\operatorname{Eg} \mathrm{E}(2 X+3), \mathrm{E}\left(5 X^{2}\right), \mathrm{E}\left(10 X^{-1}\right), \mathrm{E}\left(100 X^{-2}\right)$
$\operatorname{Eg} \operatorname{Var}(3 X), \operatorname{Var}(4 X-5), \operatorname{Var}\left(6 X^{-1}\right)$.
21.2 Poisson Distribution

Conditions for application of a Poisson distribution.

Calculation of probabilities using formula.

Use of Tables.
Mean, variance and standard Knowledge, but not derivations, will be required.
deviation of a Poisson distribution.

Distribution of sum of independent Poisson distributions.
21.3 Continuous Random Variables

Differences from discrete random variables.
Probability density functions, cumulative distribution functions and their relationship.

The probability of an observation lying in a specified interval.
Median, quartiles and percentiles.
Mean, variance and standard
Knowledge of the formulae deviation.
$\mathrm{E}(X)=\int x \mathrm{f}(x) \mathrm{d} x, \mathrm{E}(\mathrm{g}(X))=\int \mathrm{g}(x) \mathrm{f}(x) \mathrm{d} x$,
$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}, \mathrm{E}(a X+b)=a E(X)+b$ and
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
will be expected.
Mean, variance and standard deviation of a simple function of a continuous random variable.

Rectangular distribution.
E.g. $\mathrm{E}(2 X+3), \mathrm{E}\left(5 X^{2}\right), \mathrm{E}\left(10 X^{-1}\right), \mathrm{E}\left(100 X^{-2}\right)$.
E.g. $\operatorname{Var}(3 X), \operatorname{Var}(4 X-5), \operatorname{Var}\left(6 X^{-1}\right)$.

Calculation of probabilities, proofs of mean, variance and standard deviation.

21.4 Estimation

Confidence intervals for the mean of a normal distribution with unknown variance.

Using a t distribution.
Only confidence intervals symmetrical about the mean will be required.
Questions may involve a knowledge of confidence intervals from the module Statistics 1.
21.5 Hypothesis Testing

Null and alternative hypotheses.

One tailed and two tailed tests, significance level, critical value, critical region, acceptance region, test statistic, Type I and Type II errors.

Tests for the mean of a normal distribution with known variance.

Tests for the mean of a normal distribution with unknown variance.

Tests for the mean of a distribution using a normal approximation.

The null hypothesis to be of the form that a parameter takes a specified value.

The concepts of Type I errors (reject $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ true) and Type II errors (accept $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ false) should be understood but questions which require the calculation of the risk of a Type II error will not be set. The significance level to be used in a hypothesis test will usually be given.

Using a z-statistic.

Using a t-statistic.

Large samples only. Known and unknown variance.
21.6 Chi-Squared $\left(\chi^{2}\right)$ Contingency Table Tests
Introduction to $\chi^{2} \quad$ To include use of the supplied tables. distribution.

Use of $\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$ as an
approximate χ^{2}-statistic.
Conditions for approximation The convention that all E_{i} should be greater than 5 will be expected. to be valid.

Test for independence in contingency tables.

A2 Module Statistics 3

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Statistics 1 and 2 and Core 1 and 2.

Candidate may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

For X_{i} independently distributed $\left(\mu_{i}, \sigma_{i}^{2}\right)$, then
$\sum a_{i} X_{i}$ is distributed $\left(\sum a_{i} \mu_{i}, \sum a_{i}^{2} \sigma_{i}^{2}\right)$

Power $=1-\mathrm{P}$ (Type II error)
22.1 Further Probability

Bayes' Theorem. Knowledge and application to at most three events.
The construction and use of tree diagrams
22.2 Linear Combinations of Random

Variables
Mean, variance and standard deviation of a linear combination of two (discrete or continuous) random variables.

Mean, variance and standard deviation of a linear combination of independent (discrete or continuous) random variables.

Linear combinations of
To include covariance and correlation. Implications of independent normal random variables.
independence. Applications, rather than proofs, will be required.

Use of these, rather than proofs, will be required.

Use of these only.
22.3 Distributional Approximations

Mean, variance and standard Proofs using $\mathrm{E}(X)$ and $\mathrm{E}(X(X-1))$ together with $\sum p_{i}=1$. deviation of binomial and Poisson distributions.

A Poisson distribution as an approximation to a binomial distribution.

A normal distribution as an approximation to a binomial distribution.

A normal distribution as an
Conditions for use. approximation to a Poisson distribution.
22.4 Estimation

Estimation of sample sizes necessary to achieve confidence intervals of a required width with a given level of confidence.

Confidence intervals for the difference between the means of two independent normal distributions with known variances.

Confidence intervals for the difference between the means of two independent distributions using normal approximations.

The mean, variance and standard deviation of a sample proportion.

Unbiased estimator of a population proportion.

A normal distribution as an approximation to the sampling distribution of a sample proportion based on a large sample.

Questions may be set based on a knowledge of confidence intervals from the module Statistics 1.

Symmetric intervals only. Using a normal distribution.

Large samples only. Known and unknown variances.
$\mathrm{N}\left(p, \frac{p(1-p)}{n}\right)$

Approximate confidence intervals for a population proportion and for the mean of a Poisson distribution.

Approximate confidence intervals for the difference between two population proportions and for the difference between the means of two Poisson distributions.
22.5 Hypothesis Testing

The notion of the power of a test.

Tests for the difference between the means of two independent normal distributions with known variances.

Tests for the difference between the means of two independent distributions using normal approximations.

Tests for a population proportion and for the mean of a Poisson distribution.

Tests for the difference between two population proportions and for the difference between the means of two Poisson distributions.

Use of the supplied tables to
test $\mathrm{H}_{0}: \rho=0$ for a bivariate normal population.

Using normal approximations. The use of a continuity correction will not be required in these cases.

Using normal approximations. The use of continuity corrections will not be required in these cases.

Candidates may be asked to calculate the probability of a Type II error or the power for a simple alternative hypothesis of a specific test, but they will not be asked to derive a power function. Questions may be set which require the calculation of a z-statistic using knowledge from the module Statistics 1. The significance level to be used in a hypothesis test will usually be given.

Using a z-statistic.

Large samples only. Known and unknown variances.

Using exact probabilities or, when appropriate, normal approximations where a continuity correction will not be required.

Using normal approximations where continuity corrections will not be required. In cases where the null hypothesis is testing an equality, a pooling of variances will be expected.

Where ρ denotes the population product moment correlation coefficient.

A2 Module Statistics 4

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Statistics 1 and Statistics 2 and Core 1, Core 2 and Core 3.

Those candidates who have not studied the module Statistics 3 will also require knowledge of the mean, variance and standard deviation of a difference between two independent normal random variables.

Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

For an exponential distribution, $\mathrm{F}(x)=1-\mathrm{e}^{-\lambda x}$

Efficiency of Estimator A relative to Estimator $B=$

$$
\frac{1 / \operatorname{Var}(\text { Estimator } A)}{1 / \operatorname{Var}(\text { Estimator } B)}
$$

23.1 Geometric and Exponential

 DistributionsConditions for application of a geometric distribution.

Calculation of probabilities
for a geometric distribution using formula.

Mean, variance and standard
Knowledge and derivations will be expected.
deviation of a geometric distribution.

Conditions for application of an exponential distribution.

Calculation of probabilities for an exponential distribution.

Mean, variance and standard deviation of an exponential distribution.

Knowledge that lengths of intervals between Poisson events have an exponential distribution.

Using cumulative distribution function or integration of probability density function.

Knowledge and derivations will be expected.

23.2 Estimators

Review of the concepts of a sample statistic and its sampling distribution, and of a population parameter.
Estimators and estimates.
Properties of estimators. Unbiasedness, consistency, relative efficiency.
Mean and variance of pooled estimators of means and proportions.
Proof that $\mathrm{E}\left(S^{2}\right)=\sigma^{2}$.
23.3 Estimation

Confidence intervals for the difference between the means of two normal distributions with unknown variances.

Confidence intervals for a normal population variance (or standard deviation) based on a random sample.

Confidence intervals for the ratio of two normal population variances (or standard deviations) based on independent random samples.
23.4 Hypothesis Testing

Tests for the difference between the means of two normal distributions with unknown variances.

Tests for a normal population variance (or standard deviation) based on a random sample.

Tests for the ratio of two Using an F-statistic. normal population variances (or standard deviations) based on independent random samples.

Independent and paired samples. For independent samples, only when the population variances may be assumed equal so that a pooled estimate of variance may be calculated.
Small samples only. Using a t distribution.
Using a χ^{2} distribution.

Introduction to F distribution. To include use of the supplied tables. Using an F distribution.

The significance level to be used in a hypothesis test will usually be given.
Independent and paired samples. For independent samples, only when the population variances may be assumed equal so that a pooled estimate of variance may be calculated.
Small samples only. Using a t-statistic.
Using a χ^{2}-statistic.
23.5 Chi-Squared $\left(\chi^{2}\right)$ Goodness of Fit Tests

Use of $\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$ as an
approximate χ^{2}-statistic.
Conditions for approximation The convention that all E_{i} should be greater than 5 will be expected. to be valid.

Goodness of fit tests.
Discrete probabilities based on either a discrete or a continuous distribution. Questions may be set based on a knowledge of discrete or continuous random variables from the module Statistics 2. Integration may be required for continuous random variables.

AS Module

Mechanics 1

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the modules Core 1 and Core 2. Candidates may use relevant formulae included in the formulae booklet without proof. Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

Constant Acceleration
Formulae

Weight
Momentum
Newton's Second Law
Friction, dynamic
Friction, static
$s=u t+\frac{1}{2} a t^{2}$
$s=v t-\frac{1}{2} a t^{2}$
$v=u+a t$
$s=\frac{1}{2}(u+v) t$
$v^{2}=u^{2}+2 a s$
$W=m g$
Momentum $=m v$
$F=m a \quad$ or \quad Force $=$ rate of change of momentum
$F=\mu R$
$F \leqslant \mu R$
24.1 Mathematical Modelling Use of assumptions in simplifying reality.
Mathematical analysis of models.

Interpretation and validity of models.

Candidates are expected to use mathematical models to solve problems.
Modelling will include the appreciation that:
it is appropriate at times to treat relatively large moving bodies as point masses;
the friction law $F \leqslant \mu R$ is experimental.
Candidates should be able to comment on the modelling assumptions made when using terms such as particle, light, inextensible string, smooth surface and motion under gravity.

Refinement and extension of models.
24.2 Kinematics in One and Two

Dimensions
Displacement, speed, velocity, Understanding the difference between displacement and distance. acceleration.
Sketching and interpreting
Use of gradients and area under graphs to solve problems.
kinematics graphs.
Use of constant acceleration equations.

$$
\begin{array}{ll}
s=u t+\frac{1}{2} a t^{2} & \mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2} \\
s=v t-\frac{1}{2} a t^{2} & \mathbf{s}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2} \\
v=u+a t & \mathbf{v}=\mathbf{u}+\mathbf{a} t \\
s=\frac{1}{2}(u+v) t & \mathbf{s}=\frac{1}{2}(\mathbf{u}+\mathbf{v}) t \\
v^{2}=u^{2}+2 a s &
\end{array}
$$

Vertical motion under gravity.
Average speed and average velocity.
Application of vectors in two dimensions to represent position, velocity or acceleration.
Use of unit vectors \mathbf{i} and \mathbf{j}.
Magnitude and direction of quantities represented by a vector.
Finding position, velocity, speed and acceleration of a particle moving in two dimensions with constant acceleration.
Problems involving resultant velocities.
24.3 Statics and Forces Drawing force diagrams, identifying forces present and clearly labelling diagrams. Force of gravity (Newton's Universal Law not required). Friction, limiting friction, coefficient of friction and the relationship of $F \leqslant \mu R$

When drawing diagrams, candidates should distinguish clearly between forces and other quantities such as velocity.

The acceleration due to gravity, g, will be taken as $9.8 \mathrm{~ms}^{-2}$.
Candidates should be able to derive and work with inequalities from the relationship $F \leqslant \mu R$.

Normal reaction forces.
Tensions in strings and rods, thrusts in rods.
Modelling forces as vectors.
Finding the resultant of a number of forces acting at a point
Finding the resultant force acting on a particle.
Knowledge that the resultant force is zero if a body is in equilibrium
24.4 Momentum

Concept of momentum
The principle of conservation of momentum applied to two particles.
24.5 Newton's Laws of Motion.

Newton's three laws of motion.
Simple applications of the above to the linear motion of a particle of constant mass. Use of $F=\mu R$ as a model for dynamic friction.

Candidates will be required to resolve forces only in two dimensions.
Candidates will be expected to express the resultant using components of a vector and to find the magnitude and direction of the resultant.

Find unknown forces on bodies that are at rest.

Momentum as a vector in one or two dimensions. (Resolving velocities is not required.) Momentum $=m v$
Knowledge of Newton's law of restitution is not required.

Problems may be set in one or two dimensions
Including a particle moving up or down an inclined plane.
24.6 Connected Particles

Connected particle problems.
To include the motion of two particles connected by a light inextensible string passing over a smooth fixed peg or a smooth light pulley, when the forces on each particle are constant. Also includes other connected particle problems, such as a car and trailer.

24.7 Projectiles

Motion of a particle under gravity in two dimensions.

Calculate range, time of flight and maximum height.

Modification of equations to take account of the height of release.

Candidates will be expected to state and use equations of the form $x=V \cos \alpha t$ and $y=V \sin \alpha t-\frac{1}{2} g t^{2}$. Candidates should be aware of any assumptions they are making.
Formulae for the range, time of flight and maximum height should not be quoted in examinations. Inclined plane and problems involving resistance will not be set. The use of the identity $\sin 2 \theta=2 \sin \theta \cos \theta$ will not be required.
Candidates may be expected to find initial speeds or angles of projection.

A2 Module Mechanics 2

A knowledge of the topics and associated formulae from Modules Core 1 - Core 4, and Mechanics 1 is required.
Candidates may use relevant formulae included in the formulae booklet without proof.
Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

Centres of Mass
Circular Motion

Work and Energy

Hooke's Law
25.1 Mathematical Modelling

The application of mathematical modelling to situations that relate to the topics covered in this module.

25.2 Moments and Centres of Mass

Finding the moment of a force about a given point.

Determining the forces acting on a rigid body when in equilibrium.

Knowledge that when a rigid body is in equilibrium, the resultant force and the resultant moment are both zero.

This will include situations where all the forces are parallel, as on a horizontal beam or where the forces act in two dimensions, as on a ladder leaning against a wall.

Centres of Mass.

Finding centres of mass by symmetry (e.g. for circle, rectangle).
Finding the centre of mass of a system of particles.
Finding the centre of mass of a composite body.

Finding the position of a body when suspended from a given point and in equilibrium.

Integration methods are not required.

Centre of mass of a system of particles is given by (\bar{X}, \bar{Y}) where $\bar{X} \sum m_{i}=\sum m_{i} x_{i}$ and $\bar{Y} \sum m_{i}=\sum m_{i} y_{i}$

Kinematics

Relationship between position, velocity and acceleration in one, two or three dimensions, involving variable acceleration.

Finding position, velocity and acceleration vectors, by the differentiation or integration of $\mathrm{f}(t) \mathbf{i}+\mathrm{g}(t) \mathbf{j}+\mathrm{h}(t) \mathbf{k}$, with respect to t.

Application of calculus techniques will be required to solve problems.

If $\quad \mathbf{r}=\mathrm{f}(t) \mathbf{i}+\mathrm{g}(t) \mathbf{j}+\mathrm{h}(t) \mathbf{k}$
then $\quad \mathbf{v}=\mathrm{f}^{\prime}(t) \mathbf{i}+\mathrm{g}^{\prime}(t) \mathbf{j}+\mathrm{h}^{\prime}(t) \mathbf{k}$
and $\quad \mathbf{a}=\mathrm{f}^{\prime \prime}(t) \mathbf{i}+\mathrm{g}^{\prime \prime}(t) \mathbf{j}+\mathrm{h}^{\prime \prime}(t) \mathbf{k}$
Vectors may be expressed in the form $\mathbf{a} \mathbf{i}+\mathbf{b} \mathbf{j}+\mathbf{c k}$ or as column vectors. Candidates may use either notation.
25.4 Newton's Laws of Motion

Application of Newton's laws to situations, with variable acceleration.
25.5 Application of Differential Equations
One-dimensional problems where simple differential equations are formed as a result of the application of Newton's second law.

Use of $\frac{\mathrm{d} v}{\mathrm{~d} t}$ for acceleration, to form simple differential equations, for example, $m \frac{\mathrm{~d} v}{\mathrm{~d} t}=-\frac{k}{\sqrt{v}}$ or $m \frac{\mathrm{~d} v}{\mathrm{~d} t}=k(v-2)$.

Use of $a=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} v}{\mathrm{~d} t} ; v=\frac{\mathrm{d} x}{\mathrm{~d} t}$.
The use of $\frac{\mathrm{d} v}{\mathrm{~d} t}=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ is not required.
Problems will require the use of the method of separation of variables.
25.6 Uniform Circular Motion

Motion of a particle in a circle with constant speed.

Knowledge and use of the relationships
$\nu=r \omega, a=r \omega^{2}$ and $a=\frac{\nu^{2}}{r}$.
Angular speed in radians s ${ }^{-1}$ converted from other units such as revolutions per minute or time for one revolution.

Position, velocity and acceleration vectors in relation to circular motion in terms of \mathbf{i} and \mathbf{j}.

Problems will involve either horizontal circles or situations, such as a satellite describing a circular orbit, where the gravitational force is towards the centre of the circle.

Conical pendulum.
25.7 Work and Energy

Candidates may be required to show that motion is circular by showing that the body is at a constant distance from a given point

Use of the term angular speed.

Work done by a constant force.

Gravitational potential energy.

Kinetic energy.
The work-energy principle.
Conservation of mechanical energy.
Work done by a variable force.

Hooke's law.
Elastic potential energy for strings and springs.
Power, as the rate at which a force does work, and the relationship $P=F v$.

Work done $=F d \cos \theta$

Universal law of gravitation will not be required.
Gravitational Potential Energy $=m g h$
Kinetic Energy $=\frac{1}{2} m v^{2}$
Use of Work Done $=$ Change in Kinetic Energy.
Solution of problems using conservation of energy.
One-dimensional problems only for variable forces.
Use of $\int F \mathrm{~d} x$ will only be used for elastic strings and springs.
$T=\frac{\lambda}{l} e$.
Candidates will be expected to quote the formula for elastic potential energy unless explicitly asked to derive it.

Vertical Circular Motion
Circular motion in a vertical Includes conditions to complete vertical circles. plane.

A2 Module
 Mechanics 3

A knowledge of the topics and associated formulae from Modules Mechanics 1, Core 1 and Core 2 is required. A knowledge of the trigonometric identity $\sec ^{2} x=1+\tan ^{2} x$ is also required. Candidates may use relevant formulae included in the formulae booklet without proof.

Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.

Momentum and Collision

$$
\begin{array}{ll}
I=m v-m u & \mathbf{I}=m \mathbf{v}-m \mathbf{u} \\
I=F t & \mathbf{I}=\mathbf{F} t \\
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} & \\
m_{1} \mathbf{u}_{1}+m_{2} \mathbf{u}_{2}=m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2} & \\
v=e u & \\
v_{1}-v_{2}=-e\left(u_{1}-u_{2}\right) &
\end{array}
$$

26.1 Relative Motion

Relative velocity. Use of relative velocity and initial conditions to find relative displacement. Interception and closest approach.

Velocities may be expressed in the form $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ or as column vectors.

Use of calculus or completing the square.
Geometric approaches may be required.
26.2 Dimensional Analysis

Finding dimensions of quantities.
Prediction of formulae. Checks on working, using dimensional consistency.

Finding the dimensions of quantities in terms of M, L and T . Using this method to predict the indices in proposed formulae, for example, for the period of a simple pendulum. Use dimensional analysis to find units, and as a check on working.
26.3 Collisions in one dimension

Momentum.

Impulse as change of momentum.
Impulse as Force \times Time.
Impulse as $\int F \mathrm{~d} t$
Conservation of momentum.
Newton's Experimental Law.
Coefficient of restitution.

Knowledge and use of the equation $I=m v-m u$.
$I=F t$
Applied to explosions as well as collisions.

$$
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}
$$

$v=e u$
$v_{1}-v_{2}=-e\left(u_{1}-u_{2}\right)$
26.4 Collisions in two dimensions

Momentum as a vector.
Impulse as a vector. $\quad \mathbf{I}=m \mathbf{v}-m \mathbf{u}$ and $\mathbf{I}=\mathbf{F} t$ will be required.
Conservation of momentum $\quad m_{1} \mathbf{u}_{1}+m_{2} \mathbf{u}_{2}=m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}$
in two dimensions.
Coefficient of restitution and
Newton's experimental law.
Impacts with a fixed surface. The impact may be at any angle to the surface. Candidates may be asked to find the impulse on the body. Questions that require the use of trigonometric identities will not be set.
Oblique Collisions Collisions between two smooth spheres. Candidates will be expected to consider components of velocities parallel and perpendicular to the line of centres.
26.5 Further Projectiles

Elimination of time from equations to derive the equation of the trajectory of a projectile

Candidates will not be required to know the formula
$y=x \tan \alpha-\frac{g x^{2}}{2 v^{2}}\left(1+\tan ^{2} \alpha\right)$, but should be able to derive it when needed. The identity $1+\tan ^{2} \theta=\sec ^{2} \theta$ will be required.

Projectiles launched onto inclined planes.

Problems will be set on projectiles that are launched and land on an inclined plane. Candidates may approach these problems by resolving the acceleration parallel and perpendicular to the plane.
Questions may be set which require the use of trigonometric identities, but any identities which are needed, apart from $\tan ^{2}+1=\sec ^{2} x$ and those in Core 2 , will be given in the examination paper.

Candidates will be expected to find the maximum range for a given slope and speed of projection.

Candidates may be expected to determine whether a projectile lands at a higher or lower point on the plane after a bounce.

A2 Module
 Mechanics 4

A knowledge of the topics and associated formulae from Modules Core 1 - Core 4, Mechanics 1 and Mechanics 2 is required.
Candidates may use relevant formulae included in the formulae booklet without proof.
Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.
Rotations
Moment of a Force $=\mathbf{r} \times \mathbf{F}$
Moment of Inertia $=\sum_{i=1}^{n} m_{i} x_{i}^{2}$
Rotational Kinetic Energy $=\frac{1}{2} I \omega^{2}$ or $\frac{1}{2} I \dot{\theta}^{2}$
Resultant Moment $=I \ddot{\theta}$
Centre of Mass
For a Uniform Lamina

$$
\bar{x}=\frac{\int_{a}^{b} x y \mathrm{~d} x}{\int_{a}^{b} y \mathrm{~d} x} \quad \bar{y}=\frac{\int_{a}^{b} \frac{1}{2} y^{2} \mathrm{~d} x}{\int_{a}^{b} y \mathrm{~d} x}
$$

For a Solid of Revolution (about the x-axis)

$$
\bar{x}=\frac{\int_{a}^{b} \pi x y^{2} \mathrm{~d} x}{\int_{a}^{b} \pi y^{2} \mathrm{~d} x}
$$

Couples.
Reduction of systems of coplanar forces.

Conditions for sliding and toppling.

Understanding of the concept of a couple.
Reduction to a single force, a single couple or to a couple and a force acting at a point. The line of action of a resultant force may be required.

Determining how equilibrium will be broken in situations, such as a force applied to a solid on a horizontal surface or on an inclined plane with an increasing slope. Derivation of inequalities that must be satisfied for equilibrium.
27.2 Frameworks

Finding unknown forces
Awareness of assumptions made when solving framework problems. acting on a framework. Finding the forces in the members of a light, smoothly jointed framework.
Determining whether rods are in tension or compression.
27.3 Vector Product and Moments

The vector product
$\mathbf{i} \times \mathbf{i}=\mathbf{0}, \mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{i}=-\mathbf{k}, \quad$ Candidates may use determinants to find vector products.
etc
The result $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$
The moment of a force as
$\mathbf{r} \times \mathbf{F}$.
Vector methods for resultant Finding condition for equilibrium, unknown forces or points of force and moment.
Application to simple problems.
27.4 Centres of mass by Integration for Uniform Bodies
Centre of mass of a uniform
Finding x and y coordinates of the centre of mass.
lamina by integration.
Centre of mass of a uniform
solid formed by rotating a
region about the x-axis.
27.5 Moments of Inertia

Moments of inertia for a system of particles.

Moments of inertia for uniform bodies by integration.

Moments of inertia of composite bodies.

Parallel and perpendicular axis theorems.

About any axis
$I=\sum_{i=1}^{n} m_{i} x_{i}^{2}$
Candidates should be able to derive standard results, i.e. rod, rectangular lamina, hollow or solid sphere and cylinder.

Bodies formed from simple shapes.

Application to finding moments of inertia about different axes.
27.6 Motion of a rigid body about a smooth fixed axis.
Angular velocity and To exclude small oscillations of a compound pendulum. acceleration of a rigid body.
Motion of a rigid body about a fixed horizontal or vertical axis.

Rotational kinetic energy and the principle of conservation of energy.

Moment of momentum

 (angular momentum).The principle of conservation of angular momentum.
$I \ddot{\theta}=$ Resultant Moment
Including motion under the action of a couple.
Rotational Kinetic Energy $=\frac{1}{2} I \omega^{2}$ or $\frac{1}{2} I \dot{\theta}^{2}$
To include problems such as the motion of a mass falling under gravity while fixed to the end of a light inextensible string wound round a pulley of given moment of inertia.

Forces acting on the axis of rotation

A2 Module
 Mechanics 5

Energy Formulae

A knowledge of the topics and associated formulae from Modules Core 1 - Core 4, Mechanics 1 and Mechanics 2 is required.
Candidates may use relevant formulae included in the formulae booklet without proof.
Candidates should learn the following formulae, which are not included in the formulae booklet, but which may be required to answer questions.
PE $=m g h \quad$ Gravitational Potential Energy
EPE $=\frac{1}{2} k e^{2}$ or $\frac{\lambda}{2 l} e^{2} \quad$ Elastic Potential Energy
Simple Harmonic Motion
$v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$
$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x$
28.1 Simple Harmonic Motion

Knowledge of the definition of simple harmonic motion.

Finding frequency, period and amplitude
Knowledge and use of the
formula $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$.

Formation of simple second order differential equations to show that simple harmonic motion takes place.

Solution of second order differential equations of the
form $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x$
Simple Pendulum.

Problems will be set involving elastic strings and springs.
Candidates will be required to be familiar with both modulus of elasticity and stiffness. They should be aware of and understand the relationship $k=\frac{\lambda}{l}$.

State solutions in the form $x=A \cos (\omega t+\alpha)$ or $x=A \cos (\omega t)+B \sin (\omega t)$ and use these in problems.

Formation and solution of the differential equation, including the use of a small angle approximation. Finding the period.
28.2 Forced and Damped Harmonic Motion

Understanding the terms forcing and damping and solution of problems involving them. Candidates should be able to set up and solve differential equations in situations involving damping and forcing.

Light, critical and heavy damping.

Resonance.
Application to spring/mass systems.

Damping will be proportional only to velocity.
Forcing forces will be simple polynomials or of the form $a \sin (\omega t+\alpha), \omega a \sin t+b \cos \omega t$ or $a \mathrm{e}^{b t}$.

Candidates should be able to determine which of these will take place.
Solutions may be required for the case where the forcing frequency is equal to the natural frequency.
28.3 Stability

Finding and determining whether positions of equilibrium are stable or unstable.

Use of potential energy methods. Problems will involve gravitational and elastic potential energy.
28.4 Variable Mass Problems

Equation of motion for variable mass.

Derive equations of motion for variable mass problems, for example, a rocket burning fuel, or a falling raindrop.
Rocket problems will be set in zero or constant gravitational fields.

28.5 Motion in a Plane using Polar

 CoordinatesPolar coordinates
Transverse and radial
components of velocity in polar form.

These results may be stated. No proof will be required.
Transverse and radial components of acceleration in polar form.
Application of polar form of velocity and acceleration.

Application to simple central No specific knowledge of planetary motion will be required. forces.

AS Module Decision 1

29.1 Simple Ideas of Algorithms Correctness, finiteness and generality. Stopping conditions.

Bubble, shuttle, shell, quicksort algorithms.

Candidates should appreciate that for a given input an algorithm produces a unique output. Candidates will not be required to write algorithms in examinations, but may be required to trace, correct, complete or amend a given algorithm, and compare or comment on the number of iterations required. The algorithm may be presented as a flow diagram.
Candidates should appreciate the relative advantages of the different algorithms in terms of the number of iterations required. When using the quicksort algorithm, the first number in each list will be taken as the pivot.

29.2 Graphs and Networks

Vertices, edges, edge weights, paths, cycles, simple graphs.
Adjacency/distance matrices.
For storage of graphs.
Connectedness.
Directed and undirected graphs
Degree of a vertex, odd and even vertices, Eulerian trails and Hamiltonian cycles. Trees.
Bipartite and complete graph.
Use of the notations K_{n} and $K_{m, n}$
29.3 Spanning Tree Problems Prim's and Kruskal's algorithms to find minimum spanning trees. Relative advantage of the two algorithms. Greediness.
29.4 Matchings

Use of bipartite graphs.
Improvement of matching using an algorithm.

Minimum length spanning trees are also called minimum connectors. Candidates will be expected to apply these algorithms in graphical, and for Prim's algorithm also in tabular, form.
Candidates may be required to comment on the appropriateness of their solution in its context.
29.5 Shortest Paths in Networks
$\begin{array}{ll}29.5 & \text { Shortest Paths in Networks } \\ \text { Dijkstra's algorithm. }\end{array}$

Use of an alternating path.

Problems involving shortest and quickest routes and paths of minimum cost. Including a labelling technique to identify the shortest path. Candidates may be required to comment on the appropriateness of their solution in its context.

29.6 Route Inspection Problem Chinese Postman problem.

Candidates should appreciate the significance of the odd vertices. Although problems with more than four odd vertices will not be set, candidates must be able to calculate the number of possible pairings for n odd vertices.
Candidates may be required to comment on the appropriateness of their solution in its context.

29.7	Travelling Salesperson Problem Conversion of a practical problem into the classical problem of finding a Hamiltonian cycle. Determination of upper bounds by nearest neighbour algorithm. Determination of lower bounds on route lengths using minimum spanning trees.
Linear Programming	By deleting a node, then adding the two shortest distances to the node and the length of the minimum spanning tree for the remaining graph. Candidates may be required to comment on the appropriateness of their solution in its context.
Graphical solution of two-	Candidates will be expected to formulate a variety of problems as linear programmes. They may be required to use up to a maximum of 3 variables, which may reduce to two variable requiring a graphical solution. In the case of two decision variables candidates may be expected to plot a feasible region and objective line.
Candidates may be required to comment on the appropriateness of	

A2 Module Decision 2

Candidates will be expected to be familiar with the knowledge, skills and understanding implicit in the linear programming section of Decision 1.

30.1 Critical Path Analysis

Representation of compound projects by activity networks, algorithm to find the critical path(s); cascade (or Gantt) diagrams; resource histograms and resource levelling.

Activity-on-node representation will be used for project networks. Heuristic procedures only are required for resource levelling. Candidates may be required to comment on the appropriateness of their solution in its context
30.2 Allocation
The Hungarian algorithm.

The Hungarian algorithm.
Including the use of a dummy row or column for unbalanced problems.
The use of an algorithm to establish a maximal matching may be required.
30.3 Dynamic Programming The ability to cope with negative edge lengths.
Application to production planning.
Finding minimum or maximum path through a network.
Solving maximin and minimax problems.
30.4 Network Flows Maximum flow/minimum cut theorem.
Labelling procedure.
A stage and state approach may be required in dynamic programming problems.
30.5 Linear Programming The Simplex method and the Simplex tableau.

Problems may require super-sources and sinks, may have upper and lower capacities and may have vertex restrictions.
For flow augmentation.

Candidates will be expected to introduce slack variables, iterate using a tableau and interpret the outcome at each stage.
30.6 Game Theory for Zero Sum

Games
Pay-off matrix, play-safe strategies and saddle points.

Reduction of pay-off matrix using dominance arguments.
Candidates may be required to comment on the appropriateness of their solution in its context
Optimal mixed strategies for the graphical method.
30.7 Mathematical modelling The application of

Including the interpretation of results in context. mathematical modelling to situations that relate to the topics covered in this module.

Key Skills and Other Issues

Key Skills - Teaching, Developing and Providing Opportunities for Generating Evidence

31.1 Introduction

The Key Skills Qualification requires candidates to demonstrate levels of achievement in the Key Skills of Application of Number, Communication and Information Technology.
The units for the 'wider' Key Skills of Improving Own Learning and Performance, Working with Others and Problem Solving are also available. The acquisition and demonstration of ability in these 'wider' Key Skills are deemed highly desirable for all candidates, but they do not form part of the Key Skills Qualification.
Copies of the Key Skills Units may be downloaded from the QCA Website (www.qca.org.uk/keyskills).
The units for each Key Skill comprise three sections:
A. What you need to know.
B. What you must do.
C. Guidance.

Candidates following a course of study based on this specification for Mathematics, Pure Mathematics, and/or Further Mathematics can be offered opportunities to develop and generate evidence of attainment in aspects of the Key Skills of Communication, Application of Number, Information Technology, Working with Others, and Improving Own Learning and Performance. Areas of study and learning that can be used to encourage the acquisition and use of Key Skills, and to provide opportunities to generate evidence for Part B of the units, are signposted below. The study of Mathematics does not easily lend itself to developing the Key Skill of Problem Solving. Therefore, this Key Skill is not signposted.

31.2 Key Skills Opportunities in Mathematics

The matrices below signpost the opportunities in the teaching and learning modules of this specification for the acquisition, development and production of evidence for Part B of the Key Skills units of Communication, Application of Number, Information Technology, Working with Others, and Improving Own Learning and Performance at Level 3 in the teaching and learning modules of this specification. The degree of opportunity in any one module will depend on a number of centre-specific factors, including teaching strategies and level of resources.

Communication

What you must do ...	Signposting of Opportunities for Generating					
	Mvidence in Modules					

Communication

What you must do ...	Signposting of Opportunities for Generating Evidence in Module					
	MFP3	MFP4	MS1A	MS1B	MS2B	
C3.1a Contribute to discussions	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
C3.1b Make a presentation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
C3.2	Read and synthesise information			\checkmark		
C3.3	Write different types of document			\checkmark		

Communication

What you must do ...	Signposting of Opportunities for Generating Evidence in Modules					
	MS03	MS04	MM1B	MM2B		
	\checkmark	\checkmark	\checkmark	\checkmark		
	\checkmark	\checkmark	\checkmark	\checkmark		
	Read and synthesise information					
	Write different types of document					

Communication

What you must do ...	Signposting of Opportunities for Generating					
	Evidence in Modules					
	MM03	MM04	MM05	MD01	MD02	
C3.1a Contribute to discussions	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
C3.1b Make a presentation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
C3.2 Read and synthesise information						
C3.3 Write different types of document						

Application of Number

What you must do ...	Signposting of Opportunities for Generating Evidence in Modules					
	MPC1	MPC2	MPC3	MPC4	MFP1	MFP2
N3.1 Plan and interpret information from different sources	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
N3.2 Carry out multi-stage calculations	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
N3.3 Present findings, explain results and justify choice of methods	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Application of Number

What you must do ...	Signposting of Opportunities for Generating Evidence in Modules					
	MFP3	MFP4	MS1A	MS1B	MS2B	
N3.1 Plan and interpret information from different sources	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
N3.2 Carry out multi-stage calculations	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
N3.3 Present findings, explain results and justify choice of methods	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Application of Number

What you must do ...		Signposting of Opportunities for Generating Evidence in Modules				
	MS03	MS04	MM1B	MM2B		
N3.1Plan and interpret information from different sources	\checkmark	\checkmark	\checkmark	\checkmark		
N3.2	Carry out multi-stage calculations	\checkmark	\checkmark	\checkmark	\checkmark	
N3.3Present findings, explain results and justify choice of methods	\checkmark	\checkmark	\checkmark	\checkmark		

Application of Number

What you must do ...	Signposting of Opportunities for Generating Evidence in Modules					
	MM03	MM04	MM05	MD01	MD02	
N3.1 Plan and interpret information from different sources	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
N3.2 Carry out multi-stage calculations	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
N3.3 Present findings, explain results and justify choice of methods	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Information Technology

What you must do ...	Signposting of Opportunities for Generating Evidence in Module					
	MPC1	MPC2	MPC3	MPC4	MFP1	MFP2
IT3.1 Plan and use different sources to search for and select information						
IT3.2 Explore, develop and exchange information, and derive new information						
IT3.3 Present information including text, numbers and images						

Information Technology

| What you must do ... | Signposting of Opportunities for Generating | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |$|$

Information Technology

What you must do ...	Signposting of Opportunities for Generating Evidence in Modules					
	MS03	MS04	MM1B	MM2B		
IT3.1 Plan and use different sources to search for and select information	\checkmark	\checkmark	\checkmark	\checkmark		
IT3.2 Explore, develop and exchange information, and derive new information IT3.3 Present information including text, numbers and images	\checkmark	\checkmark	\checkmark	\checkmark		

Information Technology

| What you must do ... | Signposting of Opportunities for Generating | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |$|$

Working with Others

What you must do...	Signposting of Opportunities for Generating Evidence in Modules					
	MPC1	MPC2	MPC3	MPC4	MFP1	MFP2
WO3.1 Plan the activity						
WO3.2 Work towards agreed objectives						
WO3.3 Review the activity						

Working with Others

| What you must do... | Signposting of Opportunities for Generating | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

Working with Others

What you must do...	Signposting of Opportunities for Generating					

Working with Others

| What you must do... | Signposting of Opportunities for Generating | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

Improving Own Learning and Performance

What you must do...	Signposting of Opportunities for Generating Evidence in Modules					
	MPC1	MPC2	MPC3	MPC4	MFP1	MFP2
LP3.1 Agree and plan targets	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LP3.2 Seek feedback and support	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LP3.3 Review progress	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Improving Own Learning and Performance

What you must do...	Signposting of Opportunities for Generating					

Improving Own Learning and Performance

What you must do...	Signposting of Opportunities for Generating					
	Evidence in Modules					

Improving Own Learning and Performance

What you must do...	Signposting of Opportunities for Generating						
	Evidence in Modules						

Note: The signposting in the tables above represents the opportunities to acquire, and produce evidence of, the Key Skills which are possible through this specification. There may be other opportunities to achieve these and other aspects of Key Skills via this specification, but such opportunities are dependent on the detailed course of study delivered within centres.

31.3 Key Skills in the Assessment of Mathematics

The Key Skill of Application of Number must contribute to the study of Mathematics and Further Mathematics. Aspects of Application of Number form an intrinsic part of the Assessment Objectives, and hence will form part of the assessment requirements for all units.

More specific guidance and examples of tasks that can provide evidence of single Key Skills or composite tasks that can provide evidence of more than one Key Skill are given in the Teachers' Guides published for AQA Mathematics Specification A (6300) and AQA Mathematics and Statistics Specification B (6320).

Spiritual, Moral, Ethical, Social,

 Cultural and Other Issues| 32.1 | Spiritual, Moral, Ethical,
 Social and Cultural Issues | Contexts used during the study of the modules may contribute to
 students' understanding of spiritual, moral and cultural issues. |
| :--- | :--- | :--- |
| 32.2 | European Dimension | AQA has taken account of the 1988 Resolution of the Council of the
 European Community in preparing this specification and associated
 specimen papers. |
| 32.3 | Environmental Education | AQA has taken account of the 1988 Resolution of the Council of the
 European Community and the Report Environmental Responsibility: An
 Agenda for Further and Higher Education 1993 in preparing this
 specification and associated specimen papers. |
| 32.4 | Avoidance of Bias | AQA has taken great care in the preparation of this specification and
 associated specimen papers to avoid bias of any kind. |

Centre-assessed Component

Nature of Centre-assessed Component

33.1	Candidates will present one task, of approximately 8-10 hours' duration, for MS1A.
It is intended that coursework assessment should be an integral part	
of the teaching and learning process. As a consequence, candidates	
should feel that at least some of their ongoing work will contribute to	
the final result. Coursework thus provides an opportunity for	
candidates to conduct an extended piece of mathematical reasoning	
that will also enhance their understanding of an area of the	
specification content.	
In coursework, candidates will use a reflective or creative approach to	
apply their knowledge to a real-life problem. Candidates will make	
sensible assumptions, formulate and test hypotheses, carry out	
appropriate mathematical analyses and produce reports in which they	
interpret their results in context and comment on the suitability of	
their results in terms of the original task.	

Guidance on Setting Centreassessed Component

A list of recommended coursework tasks is provided in the Guidance Pack. The pack provides guidance on appropriate coursework, exemplar materials for reference purposes together with marked pieces of work showing clearly how the criteria are to be applied. Where a centre or a candidate wishes to submit their own task the centre may submit the task to their allocated Coursework Adviser in order that guidance may be offered on the suitability of the task. Such tasks must be submitted at least six weeks prior to their use by the centre.

Assessment Criteria

35.1 Introduction

Coursework tasks for assessment will be marked internally by teachers making reference to the Marking Grid and Mark Breakdown on the Candidate Record Forms. The grid will be used to measure positive achievement, according to descriptors, within a number of categories.

35.2 Criteria

The Marking Grid and Mark Breakdown have four strands, each of which represents a different set of criteria.
The criteria within each strand on the Marking Grid are intended to indicate the essential characteristics that should be identified at various levels of performance to be expected from candidates within that unit.

Teachers must complete the Marking Grid section on the Candidate Record Form for each candidate.
The Mark Breakdown section of the Candidate Record Form gives a further detailed breakdown of marks for each strand. This section is optional. Teachers can use it as a guide in reaching the final mark for the assessment of coursework tasks. Completing this section will be useful for centres for internal standardisation procedures, and could be used by AQA as a basis for feedback to centres.
The final mark for the assessment of the coursework tasks is the sum of the marks for each strand.
If none of the criteria has been met in any strand then zero marks must be awarded in that strand.

35.3 Marking Grid for Statistics Coursework Tasks

Strand	$0 \xrightarrow{\text { Marks }} 8$	$9 \xrightarrow{\text { Marks }} 15$	$16 \xrightarrow{\text { Marks }} 20$	Assessment Objective mark allocation
Design	Problem defined and understood. Aims and objectives discussed. Some discussion of how the sample was obtained.	The approach to the task is coherent. The strategies to be employed are appropriate. Clear explanation of how sample was obtained. Some discussion of the statistical theories or distributions used.	A well-balanced and coherent approach. Clear discussion and justification of the statistical theories or distributions used in relation to the task.	AO1 6 AO2 9 AO3 3 AO4 2 AO5 0
Data Collection and Statistical Analysis	Adequate data collected. Raw data clearly set out. Some relevant calculations are correct.	A range of relevant statistical calculations are used. Most calculations are correct, and quoted to an appropriate degree of accuracy.	A full range of calculations are used. The calculations are correct and appropriate to the task.	AO1 10 AO2 4 AO3 0 AO4 0 AO5 6
Interpretation / Validation	A reasoned attempt is made to interpret the results. Some discussion of how realistic the results are. Some discussion of possible modifications.	Results are interpreted. Attempt to relate the task to the original problem. Clear discussion of possible modifications/ improvements which could have been made.	Results are fully interpreted within a statistical context. Outcomes are clearly related to the original task. Clear discussion of the effects of the sampling and data collection methods used.	 AO1 2 AO2 0 AO3 12 AO4 6 AO5 0
Communication	The report is presented clearly and organised with some explanation. Diagrams are effective and appropriate. Conclusions are stated.	The report is clear and well organised. Other areas of work which could have been investigated are discussed. The report is consistent with a piece of work of 8-10 hours.	Appropriate language and notations used throughout. The report is clear and concise and of sufficient depth and difficulty.	AO1 6 AO2 10 AO3 2 AO4 0 AO5 2

35.4 Evidence to Support the Award of Marks

The coursework task for each candidate must show clear, annotated evidence of having been marked under the four strands. Calculations must be checked for accuracy and annotated accordingly.
It is perfectly acceptable for parts of a candidate's coursework to be taken from other sources as long as all such cases are clearly identified in the text and fully acknowledged either on the Candidate Record Form or in the supporting evidence. Where phrases, sentences or longer passages are quoted directly from a source, candidates should use quotation marks.
Teachers should keep records of their assessments during the course, in a form which facilitates the complete and accurate submission of the final assessments at the end of the course.
When the assessments are complete, the final marks awarded under each of the strands must be entered on the Candidate Record Form. The Marking Grid section must be completed; the Mark Breakdown section is optional. Supporting information should also be recorded in the section provided on the last page of the form.

Supervision and Authentication

36.1	Supervision of Candidates'
Work	

36.2 Guidance by the Teacher

Candidates' work for assessment must be undertaken under conditions which allow the teacher to supervise the work and enable the work to be authenticated. If it is necessary for some assessed work to be done outside the centre, sufficient work must take place under direct supervision to allow the teacher to authenticate each candidate's whole work with confidence.
The work assessed must be solely that of the candidate concerned. Any assistance given to an individual candidate which is beyond that given to the group, as a whole must be recorded on the Candidate Record Form.
It is expected that candidates will start their coursework after consultation with their teacher. It is important that discussion should take place between the teacher and the candidate at all stages of the work involved; the coursework is not being carried out solely for the purpose of assessment; it is part of the teaching/learning process and the teacher will need to be involved in the work of the candidate if he or she is to be able to use this approach as part of the course of study.
When a candidate has need of assistance in completing a piece of work, such assistance should be given but the teacher must take the degree of assistance into account when making the assessment and, where necessary, should add appropriate comments on the Candidate Record Form. Assistance in learning a new area of mathematics for use in a problem is acceptable, and no deduction of marks should be made for such assistance.
It is accepted that candidates may wish to conduct initial data collection or experimental work in groups. Where candidates work as a group, it must be possible to identify the individual contribution of each candidate so that the requirements of the specification are met.

At the start of the course, the supervising teacher is responsible for informing candidates of the AQA Regulations concerning malpractice. Candidates must not take part in any unfair practice in the preparation of coursework to be submitted for assessment, and must understand that to present material copied directly from books or other sources without acknowledgement will be regarded as deliberate deception. Centres must report suspected malpractice to AQA. The penalties for malpractice are set out in the AQA Regulations.

36.4 Authentication of Candidates'	Both the candidate and the teacher are required to sign declarations on the Candidate Record Form, confirming that the work submitted for Work assessment is the candidate's own. The form declares that the work was conducted under the specified conditions, and requires the teacher to record details of any additional assistance.

Standardisation

37.1 Annual Standardising
Meetings

Annual standardisation meetings will usually be held in the autumn term. Centres entering candidates for the first time must send a representative to the meetings. Attendance is also mandatory in the following cases:

- where there has been a serious misinterpretation of the specification requirements;
- where the nature of coursework tasks set by a centre has been inappropriate;
- where a significant adjustment has been made to a centre's marks in the previous year's examination.

Otherwise attendance is at the discretion of centres. At these meetings, support will be provided for centres in the development of appropriate coursework tasks and assessment procedures.

37.2 Internal Standardisation of Marking

The centre is required to standardise the assessments across different teachers and teaching groups to ensure that all candidates at the centre have been judged against the same standards. If two or more teachers are involved in marking a component, one teacher must be designated as responsible for internal standardisation. Common pieces of work must be marked on a trial basis and differences between assessments discussed at a training session in which all teachers involved must participate. The teacher responsible for standardising the marking must ensure that the training includes the use of reference and archive materials such as work from a previous year or examples provided by AQA. The centre is required to send to the moderator a signed form Centre Declaration Sheet confirming that the marking of coursework at the centre has been standardised. If only one teacher has undertaken the marking, that person must sign this form.

Administrative Procedures

38.1 Recording Assessments

A separate Candidate Record Form must be completed for the coursework entered by each candidate. The candidates' work must be marked according to the assessment criteria set out in Section 35.2, then the marks and supporting information must be recorded on the Candidate Record Form in accordance with the instructions in Section 35.4.

Details of any additional assistance must be given, and the teacher must sign the Candidate Record Form. The candidate must also complete and sign the first page of the form.
The completed Candidate Record Form(s) for each candidate must be attached to the work and made available to AQA on request.

38.2 Submitting Marks and Sample Work for Moderation

The total coursework mark for each candidate must be submitted to AQA on the mark sheets provided or by Electronic Data Interchange (EDI) by the specified date. Centres will be informed which candidates' work is required in the samples to be submitted to their moderator.

38.3 Factors Affecting Individual Candidates

Teachers should be able to accommodate the occasional absence of candidates by ensuring that the opportunity is given for them to make up missed assessments.
Special consideration should be requested for candidates whose work has been affected by illness or other exceptional circumstances. Information about the procedure is issued separately. Centres should ask for a copy of Regulations and Guidance relating to Candidates with Particular Requirements.
If work is lost, AQA should be notified immediately of the date of the loss, how it occurred and who was responsible for the loss. AQA will advise on the procedures to be followed in such cases.
Where special help which goes beyond normal learning support is given, AQA must be informed so that such help can be taken into account when assessment and moderation take place.
Candidates who move from one centre to another during the course sometimes present a problem for a scheme of internal assessment. Possible courses of action depend on the stage at which the move takes place. If the move occurs early in the course, the new centre should take responsibility for assessment. If it occurs late in the course, it may be possible to accept the assessments made at the previous centre. Centres should contact AQA at the earliest possible stage for advice about appropriate arrangements in individual cases.

[^0]
Moderation

39.1 Moderation Procedures

Moderation of the coursework is by inspection of a sample of candidates' work, sent by post from the centre for scrutiny by a moderator appointed by AQA. The centre marks must be submitted to AQA by the specified date.
Following the re-marking of the sample work, the moderator's marks are compared with the centre's marks to determine whether any adjustment is needed in order to bring the centre's assessments into line with standards generally. In some cases, it may be necessary for the moderator to call for the work of other candidates. In order to meet this possible request, centres must have available the coursework and Candidate Record Form of every candidate entered for the examination and be prepared to submit it on demand. Mark adjustments will normally preserve the centre's order of merit, but where major discrepancies are found, AQA reserves the right to alter the order of merit.
39.2 Post-moderation Procedures On publication of the GCE results, the centre is supplied with details of the final marks for the coursework component.

The candidates' work is returned to the centre after the examination. The centre receives a report form from their moderator giving feedback on the appropriateness of the tasks set, the accuracy of the assessments made, and the reasons for any adjustments to the marks. Some candidates' work may be retained by AQA for archive purposes.

Awarding and Reporting

Grading, Shelf-life and Re-sits

40.1 Qualification Titles	The qualification based on these specifications have the following titles:
	AQA Advanced Subsidiary GCE in Mathematics;
	AQA Advanced GCE in Mathematics;
	AQA Advanced Subsidiary GCE in Pure Mathematics;
	AQA Advanced GCE in Pure Mathematics;
	AQA Advanced Subsidiary GCE in Further Mathematics;
	AQA Advanced GCE in Further Mathematics.

Individual assessment unit results will be certificated.

40.3	Shelf-life of Unit Results	The shelf-life of individual unit results, prior to certification of the qualification, is limited only by the shelf-life of the specification.
40.4	Assessment Unit Re-Sits	Each assessment unit may be re-taken an unlimited number of times within the shelf-life of the specification. The best result will count towards the final award. Candidates who wish to repeat an award must enter for at least one of the contributing units and also enter for certification (cash-in). There is no facility to decline an award once it has been issued.
40.5	Carrying Forward of Coursework Marks	Candidates re-taking a unit with coursework may carry forward their moderated coursework marks. These marks have a shelf-life which is limited only by the shelf-life of the specification, and they may be carried forward an unlimited number of times within this shelf-life.
40.6	Minimum Requirements	Candidates will be graded on the basis of work submitted for the award of the qualification.

40.7 Awarding and Reporting

This specification complies with the grading, awarding and certification requirements of the current GCSE, GCE, Principal Learning and Project Code of Practice April 2011, and will be revised in the light of any subsequent changes for future years.

Appendices

Grade Descriptions

The following grade descriptors indicate the level of attainment characteristic of the given grade at AS and A Level. They give a general indication of the required learning outcomes at each specific grade. The descriptors should be interpreted in relation to the content outlined in the specification; they are not designed to define that content.

The grade awarded will depend, in practice, on the extent to which the candidate has met the Assessment Objectives (as in Section 6) overall. Shortcomings in some aspects of the examination may be balanced by better performances in others.

Grade A Candidates recall or recognise almost all the mathematical facts, concepts and techniques that are needed, and select appropriate ones to use in a wide variety of contexts.
Candidates manipulate mathematical expressions and use graphs, sketches and diagrams, all with high accuracy and skill. They use mathematical language correctly and proceed logically and rigorously through extended arguments. When confronted with unstructured problems, they can often devise and implement an effective solution strategy. If errors are made in their calculations or logic, these are sometimes noticed and corrected.

Candidates recall or recognise almost all the standard models that are needed, and select appropriate ones to represent a wide variety of situations in the real world. They correctly refer results from calculations using the model to the original situation; they give sensible interpretations of their results in the context of the original realistic situation. They make intelligent comments on the modelling assumptions and possible refinements to the model.
Candidates comprehend or understand the meaning of almost all translations into mathematics of common realistic contexts. They correctly refer the results of calculations back to the given context and usually make sensible comments or predictions. They can distil the essential mathematical information from extended pieces of prose having mathematical content. They can comment meaningfully on the mathematical information.
Candidates make appropriate and efficient use of contemporary calculator technology and other permitted resources, and are aware of any limitations to their use. They present results to an appropriate degree of accuracy.

Grade C Candidates recall or recognise most of the mathematical facts, concepts and techniques that are needed, and usually select appropriate ones to use in a variety of contexts.
Candidates manipulate mathematical expressions and use graphs, sketches and diagrams, all with a reasonable level of accuracy and skill. They use mathematical language with some skill and sometimes proceed logically through extended arguments or proofs. When confronted with unstructured problems, they sometimes devise and implement an effective and efficient solution strategy. They occasionally notice and correct errors in their calculations.
Candidates recall or recognise most of the standard models that are needed and usually select appropriate ones to represent a variety of situations in the real world. They often correctly refer results from calculations using the model to the original situation, they sometimes give sensible interpretations of their results in the context of the original realistic situation. They sometimes make intelligent comments on the modelling assumptions and possible refinements to the model.
Candidates comprehend or understand the meaning of most translations into mathematics of common realistic contexts. They often correctly refer the results of calculations back to the given context and sometimes make sensible comments or predictions. They distil much of the essential mathematical information from extended pieces of prose having mathematical context. They give some useful comments on this mathematical information.
Candidates usually make appropriate and efficient use of contemporary calculator technology and other permitted resources, and are sometimes aware of any limitations to their use. They usually present results to an appropriate degree of accuracy.

Grade E Candidates recall or recognise some of the mathematical facts, concepts and techniques that are needed, and sometimes select appropriate ones to use in some contexts.
Candidates manipulate mathematical expressions and use graphs, sketches and diagrams, all with some accuracy and skill. They sometimes use mathematical language correctly and occasionally proceed logically through extended arguments or proofs.
Candidates recall or recognise some of the standard models that are needed and sometimes select appropriate ones to represent a variety of situations in the real world. They sometimes correctly refer results from calculations using the model to the original situation; they try to interpret their results in the context of the original realistic situation. Candidates sometimes comprehend or understand the meaning of translations in mathematics of common realistic contexts. They sometimes correctly refer the results of calculations back to the given context and attempt to give comments or predictions. They distil some of the essential mathematical information from extended pieces of prose having mathematical content. They attempt to comment on this mathematical information.

Candidates often make appropriate and efficient use of contemporary calculator technology and other permitted resources. They often present results to an appropriate degree of accuracy.

Formulae for AS and A Level Mathematics Specifications

This appendix lists formulae which relate to the Core modules, MPC1 - MPC4, and which candidates are expected to remember. These formulae will not be included in the AQA formulae booklet.

$$
\begin{array}{ll}
\text { Quadratic equations } & a x^{2}+b x+c=0 \text { has roots } \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\text { Laws of logarithms } & \log _{a} x+\log _{a} y \equiv \log _{a}(x y) \\
& \log _{a} x-\log _{a} y \equiv \log _{a}\left(\frac{x}{y}\right) \\
& k \log _{a} x \equiv \log _{a}\left(x^{k}\right)
\end{array}
$$

Trigonometry In the triangle $A B C$:

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \text { area }=\frac{1}{2} a b \sin C \\
& \cos ^{2} A+\sin ^{2} A \equiv 1 \\
& \sec ^{2} A \equiv 1+\tan ^{2} A \\
& \operatorname{cosec}^{2} A \equiv 1+\cot ^{2} A \\
& \sin 2 A \equiv 2 \sin A \cos A \\
& \cos 2 A \equiv \cos ^{2} A-\sin ^{2} A \\
& \tan 2 A \equiv \frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Differentiation

Function	Derivative
x^{n}	$n x^{n-1}$
$\sin k x$	$k \cos k x$
$\cos k x$	$-k \sin k x$
$\mathrm{e}^{k x}$	$k \mathrm{e}^{k x}$
$\ln x$	$\frac{1}{x}$
$\mathrm{f}(x)+\mathrm{g}(x)$	$\mathrm{f}^{\prime}(x)+\mathrm{g}^{\prime}(x)$
$\mathrm{f}(x) \mathrm{g}(x)$	$\mathrm{f}^{\prime}(x) \mathrm{g}(x)+\mathrm{f}(x) \mathrm{g}^{\prime}(x)$
$\mathrm{f}(\mathrm{g}(x))$	$\mathrm{f}^{\prime}(\mathrm{g}(x)) \mathrm{g}^{\prime}(x)$

Integration Function
x^{n}
$\cos k x \quad \frac{1}{k} \sin k x+c$
$\sin k x \quad-\frac{1}{k} \cos k x+c$
$\mathrm{e}^{k x} \quad \frac{1}{k} \mathrm{e}^{k x}+c$
$\frac{1}{x} \quad \ln |x|+c, \quad x \neq 0$
$\mathrm{f}^{\prime}(x)+\mathrm{g}^{\prime}(x) \quad \mathrm{f}(x)+\mathrm{g}(x)+c$
$\mathrm{f}^{\prime}(\mathrm{g}(x)) \mathrm{g}^{\prime}(x) \quad \mathrm{f}(\mathrm{g}(x))+c$
Area area under a curve $=\int_{a}^{b} y \mathrm{~d} x, \quad y \geq 0$
Vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \cdot\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=x a+y b+z c$

Mathematical Notation

Set notation	ϵ	
	\notin	is not an element of
	$\left\{x_{1}, x_{2}\right.$,	the set with elements x_{1}, x_{2}, \ldots
	$\{x: \ldots\}$	the set of all x such that ...
	$\mathrm{n}(A)$	the number of elements in set A
	\varnothing	the empty set
	\square	the universal set
	A^{\prime}	the complement of the set A
	\mathbb{N}	the set of natural numbers, $\{1,2,3, \ldots\}$
	\mathbb{Z}	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
	\mathbb{Z}^{*}	the set of positive integers, $\{1,2,3, \ldots\}$
	\mathbb{Z}_{w}	the set of integers modulo $n,\{0,1,2, \ldots, n-1\}$
	Q	the set of rational numbers, $\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{Z}^{*}\right\}$
	Q ${ }^{+}$	the set of positive rational numbers, $\{x \in \mathbb{Q}: x>0\}$
	\mathbf{Q}_{0}^{*}	the set of positive rational numbers and zero, $\{x \in \mathbb{Q}: x \geq 0\}$
	\mathbb{R}	the set of real numbers
	\mathbb{R}^{*}	the set of positive real numbers, $\{x \in \mathbb{R}: x>0\}$
	\mathbb{R}_{0}^{*}	the set of positive real numbers and zero, $\{x \in \mathbb{R}: x \geq 0\}$
	C	the set of complex numbers
	(x, y)	the ordered pair x, y
	$A \times B$	the Cartesian product of sets A and B, i.e. $A \times B=\{(a, b): a \in A, b \in B\}$
	\subseteq	is a subset of
	\subset	is a proper subset of
	\cup	union
	\bigcirc	intersection
	[a, b]	the closed interval $\{x \in \mathbb{R}: a \leq x \leq b\}$
	$[a, b),[a, b$ the interval $\{x \in \mathbb{R}: a \leq x<b\}$	
$(a, b],] a, b$ the interval $\{x \in \mathbb{R}: a<x \leq b\}$		
$(a, b),] a, b$ the open interval $\{x \in \mathbb{R}: a<x<b\}$		
$y R x \quad y$ is related to x by the relation R		
	$y \sim x$	y is equivalent to x, in the context of some equivalence relation

Miscellaneous symbols $=\quad$ is equal to

	\#	is not equal to
	三	is identical to or is congruent to
	\approx	is approximately equal to
	\cong	is isomorphic to
	\propto	is proportional to
	$<$	is less than
	\leqslant	is less than or equal to, is not greater than
	>	is greater than
	\geqslant	is greater than or equal to, is not less than
	∞	infinity
	$p \wedge q$	p and q
	$p \vee q$	p or q (or both)
	$\sim p$	not p
	$p \Rightarrow q$	p implies q (if p then q)
	$p \Leftarrow q$	p is implied by q (if q then p)
	$p \Leftrightarrow q$	p implies and is implied by q (p is equivalent to q)
	\exists	there exists
	\forall	for all
Operations	$a+b$	a plus b
	$a-b$	a minus b
	$a \times b$,	a multiplied by b

$a \div b, \frac{a}{b}$, $a / i a$ divided by b
$\sum_{i=1}^{n} a_{i} \quad a_{1}+a_{2}+\ldots+a_{n}$
$\prod_{i=1}^{n} a_{i} \quad a_{1} \times a_{2} \times \ldots \times a_{n}$
$\sqrt{a} \quad$ the positive square root of a
$|a| \quad$ the modulus of a
$n!\quad n$ factorial
$\binom{n}{r} \quad$ the binomial coefficient $\frac{n!}{r!(n-r)!}$ for $n \in \mathbb{Z}^{*}$
$\frac{n(n-1) \ldots(n-r+1)}{r!}$ for $n \in \mathbb{Q}$

Functions	$\mathrm{f}(x)$	the value of the function f at x
	$\mathrm{f}: A \rightarrow B$	f is a function under which each element of $\operatorname{set} A$ has an image in set B
	$\mathrm{f}: x \rightarrow y$	the function f maps the element x to the element y
	f^{-1}	the inverse function of the function f
	g of, gf	the composite function of f and g which is defined by $(\mathrm{g} \circ \mathrm{f})(x)$ or $\mathrm{gf}(x)=\mathrm{g}(\mathrm{f}(x))$
	$\lim _{x \rightarrow a} \mathrm{f}(x)$	the limit of $\mathrm{f}(x)$ as x tends to a
	$\Delta x, \delta x$	an increment of x
	$\frac{\mathrm{d} y}{\mathrm{~d}}$	the derivative of y with respect to x
	$\mathrm{d} x$	the derivative
	$\underline{\mathrm{d}^{n} y}$	the nth derivative of y with respect to x
	$\overline{\mathrm{d} x^{n}}$	the nth derivative of y with respect to x
	$\mathrm{f}^{\prime}(x), \mathrm{f}^{\prime \prime}(x), \ldots, \mathrm{f}^{(n)}(x)$	first, second, ..., nth derivatives of $\mathrm{f}(x)$ with respect to x
	$\int y \mathrm{~d} x$	the indefinite integral of y with respect to x
	$\int_{a}^{b} y \mathrm{~d} x$	the definite integral of y with respect to x between the limits $x=a$ and $x=b$
	$\frac{\partial V}{\partial x}$	the partial derivative of V with respect to x
	$\dot{x}, \ddot{x}, \ldots$	the first, second, ... derivatives of x with respect to t
nential and		
logarithmic functions	e	base of natural logarithms
	$\mathrm{e}^{x}, \exp x$	exponential function of x
	$\log _{a} x$	logarithm to the base a of x
	$\ln x, \log _{\mathrm{e}} x$	natural logarithm of x
	$\log _{10} x$	logarithm of x to base 10
Circular and hyperbolic functions	$\left.\begin{array}{l} \sin , \cos , \tan , \\ \operatorname{cosec}, \sec , \cot \end{array}\right\}$	the circular functions
	$\left.\begin{array}{l} \sin ^{-1}, \cos ^{-1}, \tan ^{-1}, \\ \operatorname{cosec}^{-1}, \sec ^{-1}, \cot ^{-1} \\ \text { sinh, cosh, tanh, } \\ \text { cosech, sech, coth } \end{array}\right\}$	the inverse circular functions the hyperbolic functions
	$\left.\begin{array}{l} \sinh ^{-1}, \cosh ^{-1}, \\ \tanh ^{-1}, \operatorname{cosech}^{-1}, \\ \operatorname{sech}^{-1}, \operatorname{coth}^{-1} \end{array}\right\}$	the inverse hyperbolic functions

Complex numbers

$$
\underset{z}{\mathrm{i}, \mathrm{j}}
$$

square root of -1
a complex number, $z=x+\mathrm{i} y$

$$
=r(\cos \theta+\mathrm{i} \sin \theta)
$$

$\operatorname{Re} z \quad$ the real part of $z, \operatorname{Re} z=x$
$\operatorname{Im} z \quad$ the imaginary part of $z, \operatorname{Im} z=y$
$|z| \quad$ the modulus of $z,|z|=\sqrt{x^{2}+y^{2}}$
$\arg z \quad$ the argument of $z, \arg z=\theta,-\pi<\theta \leq \pi$
$z^{*} \quad$ the complex conjugate of $z, x-i y$
Matrices \mathbf{M}
a matrix M
$\mathbf{M}^{-1} \quad$ the inverse of the matrix M
$\mathbf{M}^{\mathrm{T}} \quad$ the transpose of the matrix M
$\operatorname{det} \mathbf{M}$ or $|\mathbf{M}| \quad$ the determinant of the square matrix M
Vectors $\frac{\mathbf{a}}{\overrightarrow{A B}}$
the vector a
the vector represented in magnitude and direction by the directed line segment $A B$
â
$\mathbf{i}, \mathbf{j}, \mathbf{k}$
unit vectors in the directions of the Cartesian coordinate axes
$|\mathbf{a}|, a$
$|\overrightarrow{A B}|, A B \quad$ the magnitude of $\overrightarrow{A B}$
a.b
the scalar product of \mathbf{a} and \mathbf{b}
$\mathbf{a} \times \mathbf{b}$
the vector product of \mathbf{a} and \mathbf{b}
Probability and
statistics

A, B, C, etc.	events
$A \cup B$	union of the events A and B
$A \cap B$	intersection of the events A and B
$\mathrm{P}(A)$	probability of the event A
A^{\prime}	complement of the event A
$\mathrm{P}(A \mid B)$	probability of the event A conditional on the event B
X, Y, R, etc.	random variables
x, y, r, etc.	values of the random variables X, Y, R, etc.
x_{1}, x_{2}, \ldots	observations
f_{1}, f_{2}, \ldots	frequencies with which the observations x_{1}, x_{2}, \ldots occur

$p(x)$	probability function $\mathrm{P}(X=x)$ of the discrete random variable X
p_{1}, p_{2}, \ldots	probabilities of the values x_{1}, x_{2}, \ldots of the discrete random
$\mathrm{f}(x), \mathrm{g}(x)$	variable X the value of the probability density function of the continuous random variable X
$\mathrm{F}(x), \mathrm{G}(x)$,	the value of the (cumulative) distribution function $\mathrm{P}(X \leq x)$ of the continuous random variable X
$\mathrm{E}(X)$	expectation of the random variable X
$\mathrm{E}[\mathrm{g}(X)]$	expectation of $\mathrm{g}(X)$
$\operatorname{Var}(X)$	variance of the random variable X
$\operatorname{Cov}(X, Y)$	covariance of the random variables X and Y
B (n, p)	binomial distribution with parameters n and p
$\mathrm{Po}(\lambda)$	Poisson distribution with parameter λ
Geo(p)	geometric distribution with parameter p
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	normal distribution with mean μ and variance σ^{2}
μ	population mean
σ^{2}	population variance
σ	population standard deviation
\bar{x}	sample mean
s^{2}	unbiased estimate of population variance from a sample, $s^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}$
z	value of the standardised normal variable with distribution $\mathrm{N}(0,1)$
$\Phi(z)$	corresponding (cumulative) distribution function
ρ	product moment correlation coefficient for a population
r	product moment correlation coefficient for a sample
a	intercept with the vertical axis in the linear regression equation
b	gradient in the linear regression equation

Candidate Record Forms

Candidate Record Forms, Centre Declaration Sheets and GCE Mathematics specifics forms are available on the AQA website in the Administration Area. They can be accessed via the following link http://www.aqa.org.uk/admin/p course.php

Overlaps with other Qualifications

Subject awards in other AQA specifications, including the AQA GCE Statistics specification, are not prohibited combinations with subject awards in this AQA GCE Mathematics specification. However, there are overlaps in subject content between the Statistics units in this specification and the AQA GCE Statistics specification, and between the Mechanics units in this specification and the AQA GCE Physics specifications A and B. Qualifications from other awarding bodies with the same or similar titles can be expected to have a similar degree of overlap.

Relationship to other AQA GCE Mathematics and Statistics Specifications

Relationship to AQA GCE Mathematics A (6300)

This specification is a development from both the AQA GCE Mathematics A specificaion (6300) and the AQA GCE Mathematics and Statistics B specification (6320). Most units in this specification have a close equivalent in the previous specifications. The nearest equivalent modules/units are shown below for AQA GCE Mathematics A specification (6300).

New unit	Old unit	New unit	Old unit
-	MAME	MS1A	MAS1
-	MAP1	MS2B	MAS2
MPC1	-	-	MAS3
MPC2	-	-	MAS4
MPC3	MAP2	MS03	-
MPC4	MAP3	MS04	-
MFP1	-	MM1B	MAM1
MFP2	MAP4	MM2B	MAM2
MFP3	MAP5	MM03	-
MFP4	MAP6	MM04	MAM3
		MM05	MAM4
		MD01	MAD1
		MD02	MAD2

Relationship to AQA GCE Mathematics and Statistics B (6320)

This specification is a development from both the AQA GCE
Mathematics and Statistics B specification (6320) and the AQA GCE Mathematics A specificaion (6300). Most units in this specification have a close equivalent in the previous specifications. The nearest equivalent modules/units are shown below for AQA GCE Mathematics and Statistics B specification (6320).

New unit	Old unit	New unit	Old unit
MPC1	-	MS1B	MBS1
MPC2	-	MS2B	MBS4/5
MPC3	MBP4	MS03	-
MPC4	MBP5	MS04	-
MPF1	MBP3	-	MBS6
MPF2	-	-	MBS7
MFP3	-	MM1B	MBM1
MFP4	-	MM2B	MBM2/3
		MM03	MBM4
		MM04	MBM5
		MM05	MBM6

The two Statistics 1 units in this specification are identical with the two Statistics 1 units in AQA GCE Statistics (6380). The subject content in the module and the assessment for the unit are the same for each of the pairs of units shown below.

MS1A is identical to SS1A
MS1B is identical to SS1B

This is to allow flexibility for candidates who are not sure whether they want to study AS Mathematics or AS Statistics. However, there are limitations on the entries that a candidate can make for these units. See section 3.4 for details.

[^0]: 38.4 Retaining Evidence and Reusing Marks

 The centre must retain the work of all candidates, with Candidate Record Forms attached, under secure conditions from the time it is assessed; this is to allow for the possibility of an enquiry-about-results. The work may be returned to candidates after the issue of results provided that no enquiry-about-result is to be made which will include re-moderation of the coursework component. If an enquiry-about-result is to be made, the work must remain under secure conditions until requested by AQA.
 Candidates wishing to improve the result of any unit containing coursework may carry forward their moderated coursework mark from a previous series.

