

General Certificate of Secondary Education

 March 2012Mathematics
43602H
Higher
Unit 2

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

UMS conversion calculator www.aqa.org.uk/umsconversion

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
M dep A method mark which is dependent on a previous method mark being awarded.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
Q Marks awarded for quality of written communication.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.

UNIT 2 HIGHER TIER

1 a	$41 \quad 37 \quad$ B2	B1 for one or two correct	
1b	Sequence continued correctly for at least 2 more terms $(29,25, \ldots)$ Subtracts 4 correctly at least twice or correctly trials at least two integer values for n greater than 3 or 45 $-4 n=0$ or 45 $-4 n<0$	M1	oe
	-3	A1	Answer of 12 or testing $n=12$

2	$\frac{(5 \times-4)-(-8)}{-4+2}$	M1	oe Allow one error
	$-20+8$ or -12 in numerator or -2 in denominator	A1	
	6	A1	

3	Attempts to process one piece of information	M1	eg 2:9 or 4:16 $0.22 \ldots$ or 0.25 $\frac{6}{27}=\frac{2}{9}$ or $\frac{8}{32}=\frac{4}{16}$ $\frac{6}{27} \times 100$ or $\frac{8}{32} \times 100$ $\frac{24}{108}$ or $\frac{24}{96} \quad \frac{192}{864}$ or $\frac{216}{864}$ or 8 goals in 32 games is 1 goal every 4 games $4 \frac{1}{2}$ or 4 oe
	Writes both pieces of information in a form that allows for comparison	A1	$\begin{aligned} & \mathrm{eg} 2: 9 \text { and } 2: 8 \\ & 0.22 \ldots \text { and } 0.25 \\ & (1: 4.5 \text { and } 1: 4 \text { are acceptable) } \\ & 4 \frac{1}{2} \text { and } 4 \\ & \frac{2}{9} \text { and } \frac{2}{8} \quad \frac{24}{108} \text { and } \frac{24}{96} \\ & \frac{8}{36} \text { and } \frac{9}{36} \\ & \frac{192}{864} \text { and } \frac{216}{864} \\ & \text { oe } \end{aligned}$
	Correct decision from their working	Q1	Strand (iii) Dependent on M1

4	$\frac{1}{3}$ or $\frac{3}{4}$ or $1-\frac{2}{3}$ or $1-\frac{1}{4}$ seen	M1	oe
	$18=\frac{3}{4}$ or $\frac{1}{4}=6$ or $\frac{1}{3}=6$ or $\frac{1}{2}$ or $6 \times 3(=18)$ or $\frac{2}{3} \times \frac{3}{4}$ seen	M1 dep	
	6×4 or $\frac{\text { their } 18}{3} \times 4$ or $18+6$	M1 dep	Calculation leading to a final answer of 24
	24	A1	SC1 for $\frac{11}{12}$ SC2 for 72 $(£) 6=\frac{2}{3} \rightarrow(£) 9$ then $\frac{9 \times 4}{3}=12$ is SC3

5	$\frac{12500-11750 \text { or } 750}{}$	M1	
	$\frac{\text { their } 750}{12500} \times 100$	M1 dep	oe eg $\frac{750}{125}$
6	A1	SC2 for 94	
	Alternative method		
$\frac{11750}{12500} \times 100$	M1		
$100-$ their 94	M1 dep		
6	A1	SC2 for 94	

6	100×0.84 or $60 \times 1.1(0)$	M1	84 or 66 or 150	Money out
	their $150 \times 1.4(=210)$	M1 dep	oe dep on first M1	Required total sales income
	$100 \times 1.2(0)$ or $40 \times 1.6(0)$	M1	120 or 64 or 184	Money in after 40 packs sold
	(their 210 - their 184) $\div 20$	M1 dep	dep on 2nd and 3rd M1	$\begin{aligned} & \text { Money needed } \\ & \div 20 \end{aligned}$
	1.30	A1	Do not accept 1.3	
	Alternative method 1			
	100×0.84 or $60 \times 1.1(0)$	M1	84 or 66 or 150	Money out
	$100 \times 1.2(0)$ or $40 \times 1.6(0)$	M1	120 or 64 or 184	Money in after 40 packs sold
	their 184 - their 150	M1 dep	34 if correct dep on 1st and 2nd M1	Profit after 40 packs sold
	$(0.4 \times$ their $150-$ their 34$) \div 20$	M1 dep	dep on 3rd M1	Money needed $\div 20$
	1.30	A1	Do not accept 1.3	
	Alternative method 2			
	100×0.84 or $60 \times 1.1(0)$	M1	84 or 66 or 150	Money out
	100×0.36 or 40×0.50	M1	36 or 20 or 56	Profit so far
	$(0.4 \times$ their $150-$ their 56$) \div 20$	M1 dep	0.20 if correct dep on 1st and 2nd M1	Profit per pack needed
	their $0.20+1.10$	M1 dep	dep on 3rd M1	Cost price + profit per pack
	1.30	A1	Do not accept 1.3	
	Alternative method 3			
	$100 \times 1.2(0)$ or 100×0.84	M1	120 or 84 or 36	Profit
	$40 \times 1.6(0)$ or $60 \times 1.1(0)$	M1	64 or 66 or -2	Profit
	their $36+$ their (-2)	M1 dep	34 if correct dep on 1st and 2nd M1	Profit after 40 packs sold
	$(0.4 \times$ their $150-$ their 34$) \div 20$	M1 dep	dep on 3rd M1	Money needed $\div 20$
	1.30	A1	Do not accept 1.3	

7a	$C=10 d+20$	B1	
7b	Plots at least two correct points $\left(\pm \frac{1}{2} \mathrm{sq}\right)$	M1	
	Correct line from $(0,30)$ at least to intersection at $(5,70)$	A1	
7c	First Cars	B1 ft	Strict ft
	Cheaper (check graph) Graph lower down Roys Rentals $=90$ and First Cars $=86$	B1 ft	oe

8a	$12-x=15$ or $12-x=5 \times 3$	M1	$\text { oe } \quad 4-\frac{x}{3}=5$
	$\begin{aligned} & -x=\text { their } 15-12 \\ & \text { or } x=12-\text { their } 15 \end{aligned}$	M1	$\begin{aligned} & \text { or } 4-5=\frac{x}{3} \\ & -1=\frac{x}{3} \end{aligned}$ or $5-4=\frac{-x}{3}$
	-3	A1	
8b	$3 t=s-4$ or $\frac{s}{3}=t+\frac{4}{3}$	M1	oe
	$\begin{aligned} & (t=) \frac{s-4}{3} \text { or }(t=) \frac{s}{3}-\frac{4}{3} \\ & \text { or }(t=) \frac{4-s}{-3} \end{aligned}$	A1	$\operatorname{SC} 1 \quad(t=) \frac{4-s}{3} \quad \text { or } \quad(t=) \frac{s+4}{3}$

9	$-3,-2,-1,0,1,2$	B2	One error or omission B1 $-4<n \leq 2$ B1

10	$3 x+4(+) 3 x(+) x(+) x(+) x-7$ $(=150)$	M1	oe 4 or 5 correct terms
$3 x+4+3 x+x+x+x-7=150$	M1 dep	oe ft their terms	
	$9 x-3=150$ or $9 x=150+3$	A1 ft	oe ft their equation
$x=17$	A1	SC3 for solution by trial and improvement	

11	$(3 m+k)(3 m-k)$	B2	B1 for $(9 m \ldots k)(m \ldots k)$ or $(3 m+k)(3 m+k)$ or $(3 m+k)^{2}$ or $(3 m-k)(3 m-k)$ or $(3 m-k)^{2}$

12	$16 a-40$ seen	B1	
$4 a-8$ or $4 b-8$ or $4(a-2)$ or $4(b-2)$	M 1		
$4(4 a-8)-8$ or $16 a-32-8$	A 1		
Complete algebraic solution including $b=4 a-8$ and either $c=4 b-8$ or $c=16 a-40$	Q1	Strand (ii) Numerical verification scores zero marks	

13	$3 x^{4} y^{6}$	B2	B1 for two parts correct Do not accept \times signs between terms (counts as one error)

14 a	$(3 n+a)(n+b)$	M1	Where $a b= \pm 4$ or $3 b+a= \pm 7$
	$(3 n+4)(n+1)$	A1	
14 b	Sight of 34 and 11 or 22 and 17 or 2 and 187	M1	Seen on factor tree or correct division by primes
	$2 \times 11 \times 17$	A1	oe must see multiplication signs

15 a	$\sqrt{80}=4 \sqrt{5}$ or $\sqrt{16 \times 5}$ or $\sqrt{4 \times 20}$ $\sqrt{180}=6 \sqrt{5}$ or $\sqrt{36 \times 5}$ or $\sqrt{9 \times 20}$ or $\sqrt{4 \times 45}$	M1	oe or better eg $3 \sqrt{20}$ Can be written as separate roots eg $\sqrt{36}(\times) \sqrt{5}$
	$10 \sqrt{5}$	A1	
15 b	$\frac{77}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}}$ or $\frac{77 \times \sqrt{11}}{11}$	M1	
	$7 \sqrt{11}$	A1	

16	$\begin{aligned} & (\sqrt[3]{ } \sqrt{64})^{2} \text { or } \sqrt[3]{ }\left(64^{2}\right) \text { or } 4^{2} \\ & \text { or } \sqrt[3]{4096} \end{aligned}$	M1	
	16	A1	

17 a	$(3 x+1)^{2}=9 x^{2}+3 x+3 x+1$	B1			
17 b	$9 x^{2}+3 x+3 x+1=4 x^{2}-x+7$ or $9 x^{2}+6 x+1=4 x^{2}-x+7$	B1	oe		
	$5 x^{2}+7 x-6=0$	M1	ft their expansion of $(3 x+1)^{2}$ with all terms correctly collected on one side of the equation		
	$(5 x-3)(x+2)(=0)$ or $(5 x+a)(x+b)(=0)$	$a b= \pm 6$ or $5 b+a= \pm 7$ ft their quadratic or quadratic formula allowing one substitution error			
	$x=0.6$ and $x=-2$ or $x=0.6$ and $y=2.8$	A1	oe		
$y=2.8$ and $y=-5$					
or $x=-2$ and $y=-5$				\quad A1	oe
:---	:---				

18	$3 y+12=0$	M1	Attempt to find y-intercept or the value of y when $x=0$ or $y=\frac{-4 x}{3}-4$
	$y=-4$	A1	May be seen on diagram
Gradient $=\frac{4}{6}\left(=\frac{2}{3}\right)$ or $\frac{0-(-4)}{6-0}$	M1	oe ft their -4 Gradient must be positive	
$y=\frac{2}{3} x-4$	A1 ft	oe SC3 for $y=\frac{-2}{3} x-4$	

