

General Certificate of Secondary Education

 March 2011Mathematics
43602H
Higher
Unit 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
M dep \quad A method mark which is dependent on a previous method mark being awarded.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
Q Marks awarded for quality of written communication.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.

UNIT 2 HIGHER TIER 43602H

1 a	$51,54,59$	B2	B1 for two terms correct
1 b	$n^{2}+50<100$ or $n^{2}<50$	M1	oe Allow $n^{2}=50$
	7	A1	
	Alternative method 1		
	$(51,54,59) 66,75,86,99(114)$	M1	At least one correct and in correct position
	7	A1	Provided no errors
	Alternative method 2		
	Sight of correct differences added to their 59	M1	eg their 59 + 7 + 9 + 11 + 13 Must reach 100
	7	A1	Provided no errors

2	$450 \div 2$ or 225 $450 \div 4$ or 112.5 450×7 or 3150 450×14 or 6300 450×3 or 1350 450×4 or 1800	M1	oe
their 225×7, their 112.5×14			
their $150 \div 2$, their $6300 \div 4$			
their $1350+450 \div 2$			
their $1800-450 \div 2$	M1	or equivalent complete method scores M2	
1575	A 1		

3	$\frac{-6 \times 4}{-6+(-2)}$	M1	Allow M1 for -24 and -8 seen
	$\frac{-24}{-8}$	A1	For no substitution shown allow M1 A0 for $\frac{-24}{8}$$\frac{-24}{-4} \quad \frac{-24}{4}$
	3	A1 ft	ft if only one error

4

$50(p)-\frac{30}{100} \times 50(p)$ or $\frac{70}{100} \times 50(p)$	M1	oe
$35(p)$ or $(£)(0) .35$ $420(p)$ or $(£) 4.2(0)$ $140(p)$ or $(£) 1.4(0)$	A1	
$\frac{3}{4} \times 48(p)$ or $9 \times 48(p)$	M1	
or $3 \times 48(p)$	A1	Note: for both A marks to be awarded they must be buying the same number of tins
$432(p)(0) .36$ $144(p)$ or $(£) 1.44$	Strand (iii) Must have both Ms awarded and be comparing like with like	
Correct conclusion from their working with all calculations shown		

5a	$C=8 d+16$	B1	Last one
5b	Plots graph ... at least two correct coordinates for $C=9 d+11$	M1	Works out costs for at least 2 days for Woods Tool Hire ... 20, 29, 38, $47,56 \ldots$ (minimum of 2 of these)
	Correct straight line to intersection at $(5,56)$	A1	Identifies equal cost for 5 days
	No ticked with valid statement No may be implied	A1	eg cheaper up to 4 days, equal costs for 5 days, more expensive for 6 days onwards
	Alternative method 1		
	$8 d+16=9 d+11$	M1	
	$d=5$	A1	
	No ticked with valid statement No may be implied	A1	eg cheaper up to 4 days, equal costs for 5 days, more expensive for 6 days onwards
	Alternative method 2		
	$9 \times$ their $d+11$	M1	their $d \geq 5$
	Correct calculation	A1	
	Corresponding correct value from Branch Tool Hire and No ticked No may be implied	A1	From graph or using correct formula

6 a	$w^{2}-4 w$	B 2	B1 for w^{2} or $-4 w$
6 b	$8(t+3)$	B 1	Accept 4 $(2 t+6)$ or $2(4 t+12)$
6 c	$y^{2}-2 y+7 y-14$	M 1	Allow one error Must see 4 terms
	$y^{2}+5 y-14$	A 1	

7	$\frac{10 \times 10}{0.5}$	M1	oe eg $\frac{10^{2}}{0.5}$
	200	A1	

8	$455 \div(1+2+4)(=65)$	M1	oe
	$4 \times$ their 65	M1 dep	$\frac{4}{7} \times 455$ scores M2
	260	A1	Accept $65: 130: 260$

9a	$4 x+12=17$ or $x+3=\frac{17}{4}$	M1	$4 x+3=17$ is M0
	$4 x=17-12$ or 5 or $x=\frac{17}{4}-3$	M1	for correct rearranging $4 x=17-3$ is M1 $4 x=17+12$ is M0
$x=1 \frac{1}{4}$ A1 ft oe ft if M1 M0 or M0 M1 awarded			
9b	$2 n>5+1$ or $2 n>6$	M1	
	$n>3$	A1	$n=3$ is A0

10	Right-angled triangle drawn above or below either line, with lengths indicated or Either 2 and 6 or 3 and 9 used as a ratio or fraction	M1	Correct substitution into gradient formula $\frac{y 2-y 1}{x 2-x 1}$ \ldots or inverted			
$\frac{2}{6}$ and $\frac{3}{9}$	Award for $\frac{1}{3}$ seen with no working			$	$	Both simplify to $\frac{1}{3}$ so lines
:---						
parallel or have same gradient or Equations are $y=\frac{1}{3} x+2$ and $y=\frac{1}{3} x-3$ hence lines are parallel or lines have same gradient						
A1						

11	$(£) 280=80 \%$	M1	oe
	$280 \div 80 \times 100$ or $280 \div 0.8$	M1	oe
	$(£) 350$ and No	A1	oe

$12 a$	$(0) .00528$	B1	
$12 b$	49×10^{6} or 49000000	B1	
	4.9×10^{7}	B1 ft	ft their 49×10^{6} or 49000000

23	$2 h-2 y=5 y+3$	M1	$2 h-y=5 y+3$ is M0
	$2 h=5 y+2 y+3$ or $2 h=7 y+3$	M1	for correct rearranging after attempt at expansion seen $2 h=5 y+y+3$ is M1 $2 h=5 y+2 y+3$ is M0
$h=\frac{7 y+3}{2}$ or $h=\frac{5 y+2 y+3}{2}$	A1 ft	Must see $h=\ldots$ ft if M1 M0 or M0 M1 awarded	
Alternative method	M2		
$h-y=\frac{5 y+3}{2}$	A1 ft	$h=y=2.5 y+1.5$ or $h=3.5 y+1.5$ Must see $h=\ldots$	
$h=\frac{5 y+3}{2}+y$			
or $h=\frac{5 y+2 y+3}{2}$			

14 a	Sight of $\sqrt{4}=2$ followed by 2 or 4^{3} followed by $\sqrt{64}$	B2	B1 for partial solution but incomplete eg for $\sqrt{4}=2$ seen or 64 seen
14 b	$\left(4^{y}=\right)\left(4^{1.5}\right)^{6}$ or $\left(2^{2}\right)^{y}=\left(2^{3}\right)^{6}$	M1	Allow 1.5×6 or $2 \times y=3 \times 6$
	9	A1	Allow $\frac{18}{2}$ and 4^{9}

15

$(5 x \pm a)(x \pm b)(=0) a b=24$	M 1	
$(5 x-6)(x+4)(=0)$	A 1	
$1 \frac{1}{5}$ and -4	A 1	oe eg $\frac{6}{5}$ or 1.2
Alternative method 1		
$x=\frac{-14 \pm \sqrt{14^{2}-4(5)(-24)}}{2 \times 5}$	M 1	Allow one substitution error but not a conceptual error
$x=\frac{-14 \pm \sqrt{676}}{10}$	A1	or better
$(x=) 1 \frac{1}{5}$ and -4	A1	oe
Alternative method 2		
$(x+1.4)^{2}-1.96-4.8(=0)$	M 1	Allow one numerical error
$x+1.4= \pm \sqrt{6.76}$	A1	
$(x=) 1.2$ and -4	A1	oe

16	$3 b+g=62$ or $b+2 g=59$	B1	
	$3 b+g=62$ and $3 b+6 g=177$ or $6 b+2 g=124$ and $b+2 g=59$ or $3 b+g=62$ and $2 b-g=3$	M1	oe Correct attempt at elimination \ldots Allow one error in the two elimination steps If substitution method used then allow one error in the substitution or simplification
	$5 g=115$ or $5 b=65$	M1 dep	oe
$b=13$ and $g=23$	A1	SC2 for correct solution by trial and improvement	

17 \begin{tabular}{l|c|l|l|}
\hline$(x \sqrt{2}=)(5+\sqrt{3})(5-\sqrt{3})$ \& M1 \&

\hline | $(x \sqrt{2}=) 5 \times 5+5 \sqrt{3}-5 \sqrt{3}$ |
| :--- |
| $-\sqrt{3} \times \sqrt{3}(=22)$ | \& M1 \& or better

\hline$x=\frac{\text { their } 22}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ \& M1 dep \& | oe eg $x \sqrt{2} \sqrt{2}=22 \sqrt{2}$ |
| :--- |
| or $2 x^{2}=484$ |
| their 22 must be an integer |
| Dependent on the first M1 |

\hline$(x=) 11 \sqrt{2}$ \& A1 \&

\hline
\end{tabular}

18	$n^{2}+(n+1)^{2}$	M1	Condone missing brackets if recovered
	$n^{2}+n^{2}+2 n+1$	M1 dep	
	$2 n^{2}+2 n+1$	A1	
	$2 n(n+1)+1$	A1	Accept $2 n(n+1)+1=2 n^{2}+2 n+1$ or $2 n(n+1)=2 n^{2}+2 n$ for this mark provided the first 3 marks have been earned
	Complete solution with all stages clearly shown	Q1	Strand (ii) Clear explanation Do not award if first line assumes answer with use of $=$ sign $\text { eg } n^{2}+(n+1)^{2}=2 n(n+1)+1$
	Alternative method		
	$n^{2}+(n+1)^{2}-2 n(n+1)$	M1	Condone missing brackets if recovered
	$n^{2}+n^{2}+2 n+1-2 n(n+1)$	M1 dep	
	$2 n^{2}+2 n+1-2 n(n+1)$	A1	
	$2 n^{2}+2 n+1-2 n^{2}-2 n$	A1	Allow $2 n^{2}+2 n+1-\left(2 n^{2}+2 n\right)$
	Complete solution with all stages clearly shown	Q1	Strand (ii) Clear explanation Do not award if first line assumes answer with use of $=$ sign $\text { eg } n^{2}+(n+1)^{2}-2 n(n+1)=1$

