

GCE

Mathematics

Advanced GCE

Unit 4737: Decision Mathematics 2

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1 (i)	Cornflakes (1) Rice pips (2) Wheat biscs (3) Choco pips (5) Honey footballs (6) (A) Adam (B) Barbara (C) Charlie (D) Donna (E) Edward (F) Fiona	B1	[1]	Bipartite graph correct	Condone any extra labels (working)
(ii)	Cornflakes (1) (A) Adam Rice pips (2) (B) Barbara Wheat biscs (3) (C) Charlie Oatie bits (4) (D) Donna Choco pips (5) (E) Edward Honey footballs (6) (F) Fiona	B1	[1]	Incomplete matching correct	Condone any extra labels (working) but not extra arcs (working), apart from an X if used Alternating path shown (even if dashed) \Rightarrow B0
(iii)	6 = B - 3 = D - 2 = C - 5 = A Cornflakes = Fiona Rice pips = Charlie Wheat biscs = Donna Oatie bits = Edward Choco pips = Adam Honey footballs = Barbara	B1	[2]	This alternating path written down, not just read off from labels on graph This matching written down in words (or numbers and letters)	Written in any unambiguous form (condone reversed) Written in any unambiguous form A = Choco pips (5) B = Honey footballs (6) C = Rice pips (2) D = Wheat biscs (3) E = Oatie bits (4) F = Cornflakes (1)
(iv)	A = 1 - F = 4 - E = 5 Cornflakes = Adam Rice pips = Charlie Wheat biscs = Donna Oatie bits = Fiona Choco pips = Edward Honey footballs = Barbara	B1	[2]	This alternating path written down, not just read off from labels on graph This matching written down in words (or numbers and letters)	Written in any unambiguous form Not a longer path Written in any unambiguous form $A = Cornflakes (1)$ $B = Honey footballs (6)$ $C = Rice pips (2)$ $D = Wheat biscs (3)$ $E = Choco pips (5)$ $F = Oatie bits (4)$

2	(i)	Dummy columns are needed to make a square table Dummies should not have positive scores because they should not be more suitable than any of the family members Modify resulting table by subtracting all scores from 8 (or any fixed constant ≥ 8)	B1 B1 B1	[3]	Square Because there are more cards than people Smallest value in table is 0 Less than or equal to all values in table So they do not affect the row reductions Saying how to convert to a minimisation problem	So that (number of) people equals (number of) cards; one person for each card (or vv) Not 'dummies are not suitable for anyone' (dummies are people not cards) Not vague statements Must be written down, not just shown in working
	(ii)	Add dummy columns and convert to a minimisation problem	<u>†</u> 	[5]	This matrix seen or implied	Condone up to three individual arithmetic slips Dummy columns missing ⇒ M0
		Reduce rows A B C D E F G H P 4 2 4 0 6 2 6 6 Q 2 0 2 0 2 1 5 5 R 2 1 2 2 2 0 8 8 S 2 0 2 2 6 2 6 6 T 4 5 4 1 5 0 5 5 U 1 0 0 0 1 1 4 4 V 0 2 0 1 0 2 7 7 W 2 0 1 2 1 1 6 6	M1		Substantially correct attempt at reducing (their) rows (or columns)	Condone up to three individual arithmetic slips, must be convincingly reducing rows (or columns) Not dependent on first method mark

	Redu	ce co	umns										
		\boldsymbol{A}	В	C	D	Ε	F	G	H				
	P	4	2	4	0	6	2	2	2	A 1			
	Q	2	0	2	0	2	1	1	1	A1		Reducing columns for a correct row reduced	Correct method, with no errors leading to
	R	2	1	2	2	2	0	4	4			matrix to achieve this (given) reduced cost matrix	the given matrix
	S	2	0	2	2	6	2	2	2			matrix	Could get away with reducing rows
	T	4	5	4	1	5	0	1	1				correctly and then saying that reducing
	U	1	0	0	0	1	1	0	0				columns gives the matrix in the question
	<u>V</u>	0	2	0	1	0	2	3	3		[2]		2
(444)	W	2	0	1	2	1	1	2	2		[3]		
(iii)	Cross	_		-	_		1					This is not follow through from (ii)	
		\boldsymbol{A}	В	\boldsymbol{C}	D	E	F		H				
	<u> P</u>	4	2	4	0	6	2	2	2				
	<u>Q</u>	2	0	2	0	2	1	1	1				
	R	2	1	2	2	2	0	4	4				
	$\frac{S}{T}$	2	0	2	2	6 5	2 0	2	2	- M1		Cross out 0's using these 5 lines	May be seen in answer space for (ii), allow this if it happens, but check here first
	$\frac{I}{U}$	4	5	0	0) 1	0	1	0				
	$\frac{U}{V}$	0	0 2	0	1	0	2	0 3	3				
	$\frac{v}{W}$	2	0	1	2	1	1	2	2				
	Augn	•	V				1	2	-				
	1	A	В	C	D	E	F	G	H				
	P	3	2	3	0	5	2	1	1				
	\overline{Q}	1	0	1	0	1	1	0	0			Substantially correct attempt at augmenting	
	R	1	1	1	2	1	0	3	3	M1			
	S	1	0	1	2	5	2	1	1			(from 5 lines crossed out, or more)	
	T	3	5	3	1	4	0	0	0				
	\overline{U}	1	1	0	1	1	2	0	0				
	<u>V</u>	0	3	0	2	0	3	3	3	A1		This final matrix (cao)	All entries correct
	W	1	0	0	2	0	1	1	1				
	'Viev				ent to	Ad	am rbara			M1		A valid matching from the 0's in their 8×8	Matching the six cards using their entries
					ent to					1711		reduced cost matrix	with reduced $cost = 0$ from an 8x8 matrix
		'University' is sent to Charlie 'Painted barges' is sent to Donna											
	'Wine				ent to		vard			A1		This matching, in words or symbols	cao
	'Reichsmuseum' is sent to Fiona												
	'Qua	int ho	uses'	and '	Tulip	s' are	not u	sed		B1	[6]	Q and T not used	cao

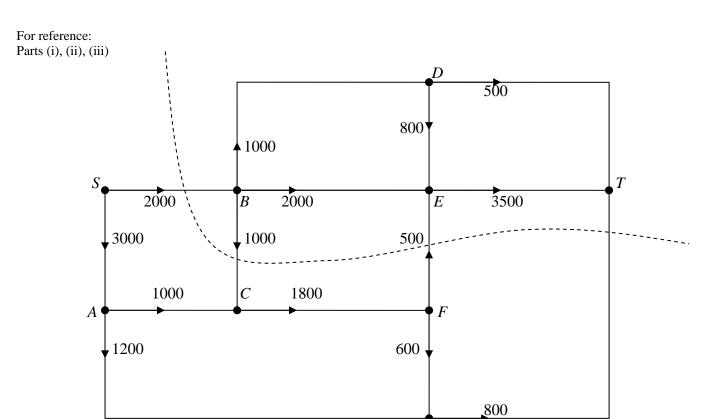
4737 Mark Scheme June 2011

3	(i)	If it is rainy $D > A > C > B$ but if it is sunny $B > C > A > D$ so for each pair the better choice for rainy weather is the worse choice for sunny weather	M1 A1	[2]	A substantially correct explanation for at least one pair in words or using inequalities A correct explanation for all pairs: A&B, A&C, A&D, B&C, B&D, C&D or equivalent (eg why each cannot always be best)	'B is best for sunny but worst for rainy'; 'no magazine gives a higher income for both sunny and rainy weather over any other magazine' Explaining how what they have done shows that no magazine can be rejected by dominance
	(ii)	R S row min A 4000 5000 4000 B 1000 7000 1000 C 3000 6000 3000 D 5000 3000 3000 col max 5000 7000	M1		Calculating row minima (condone 1 error) (or maximin)	4000, 1000, 3000, 3000 (or 4, 1, 3, 3)
		Play-safe is 'Activity holidays'	A1		A (cao, without wrong working)	(May also see R)
		Play-safe for weather is 'rainy'= 5000			Calculating column minimax or substantially correct reasoned argument	If Basil chooses A(plays safe) and it is rainy he would have been better with D (or if it is sunny he would have been better with B or with C)
		4000 ≠ 5000 so unstable	A1	[4]	Hence showing that game is unstable (may be reasoned in words)	He would want to change from his play-safe strategy, so game is unstable
	(iii)	A: (0.4)(4000)+(0.6)(5000) = £4600 B: (0.4)(1000)+(0.6)(7000) = £4600 C: (0.4)(3000)+(0.6)(6000) = £4800 D: (0.4)(5000)+(0.6)(3000) = £3800	M1 A1	[2]	Correct method for any one magazine All four correct	Any one calculation seen correctly or any one final value correct 4600 4600 4800 3800 (need not have £)
	(iv)	British beaches Dining experiences	B1	[1]	$p = 0 \text{ (sunny)} \Rightarrow B$ $p = 1 \text{ (rainy)} \Rightarrow D$	cao

(v)	Income (£1000) 6 4 2 0 0 1 Graph shows negative of E(win) for 'weather', assuming that it is a zero-sum game. Upper boundary of this graph corresponds to lower boundary of inverted graph.	В1		Correct graph (labels and scales may be implied, but must be consistent) This explanation is not required	Using the grid given in the answer booklet in any reasonable way Need not label A, B, C and D
	$0 \le p < \frac{1}{3}$ choose B $p = \frac{1}{3}$ choose B or C $\frac{1}{3} choose C p = \frac{1}{2} choose C or A \frac{1}{2} choose A p = \frac{2}{3} choose A or D \frac{2}{3} choose D$	M1	[3]	Identifying any two of the p values $1/3$, $1/2$, $2/3$ 0.3 to 0.4 for $1/3$ and 0.6 to 0.7 for $2/3$ Complete and correct answer presented in any form. Accept either choice (or no choice) on boundaries at $p=0,\frac{1}{3},\frac{1}{2},\frac{2}{3}$, 1	Follow through their graph if possible, (unless it significantly simplifies the solution) Follow through their graph if possible (unless it simplifies the solution)

	(i)	C(2) $F(3)$			Durations not necessary	Activity on node scores 0
		A(2)	M1		Correct structure, even without directions shown Activities (letters) must be labelled	Precedences must be correct, other than possibly due to any unmarked directions
		$D(3) \downarrow B(1)$ $H(2) \downarrow I(1)$ $J(1)$	M1dep		Exactly four directed dummies used correctly	Dummies may appear before or after <i>B</i> , <i>H</i> , <i>J</i> Dummy attached to <i>B</i> could alternatively be attached to <i>A</i> (before or after)
		E(2) $G(4)$	A1	[3]	Completely correct, with exactly four dummies used and all arcs directed	With single start and finish
	(ii)	2 2 C(2) 4 4 F(3)			Follow through their activity network if possible	
		A(2) 13 13 12 13	M1		Substantially correct attempt at forward pass	No more than two independent errors or omissions
		$0 \mid 0 \mid B(1)$	M1		Substantially correct attempt at backward pass	No more than two independent errors or omissions
		D(3) $7 7$ $H(2)$ $J(1)$	A1ft		Both passes wholly correct	Follow through if possible
		4 5 E(2) G(4)				
		Minimum project completion time = 13 hours Critical activities: A , C , F , G , H	B1 B1	[5]	13 cao <i>A C F G H</i> cao (in any order) and no extras	Condone wrong units
	(iii)	Workers 4 2	M1		Axes scaled appropriately and a plausible histogram with no holes or overhangs	At least as far as 10 on time axis (horizontal) and first hour at height 5 workers
		0 2 4 6 8 10 12 hours	A1	[2]	Axes also labelled and histogram completely correct, cao	Values and appropriate label on each axis, shape correct
Ī	(iv)	Delay <i>D</i> by 1 hour, so that it starts after <i>B</i> has finished and does not delay any other activity.	B1	[1]	Delay D by 1 hour (or 2)	Start D after 1 hour (or 2) BOD 'start D at 2' (or 3)
	(v)	Both do A then B (or B then A) immediately followed by C ; then one does D while other does F ; then both do E followed by G ; finally one	M1 A1		A reasonable attempt to describe a valid schedule A correct schedule described unambiguously	
		does H and other does I and J 16 hours	B1	[3]	May be given as a timetable 16 cao	Accept, for example, $ABCDEGH$ FIJ

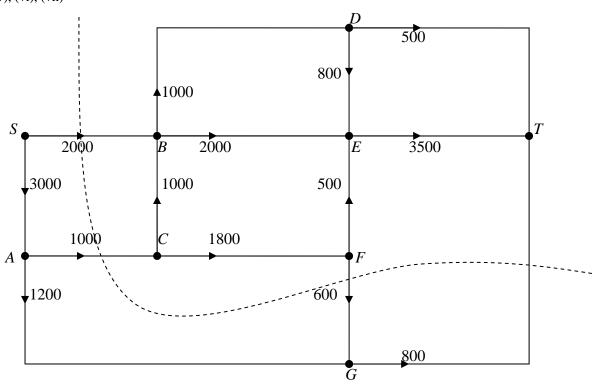
For reference:

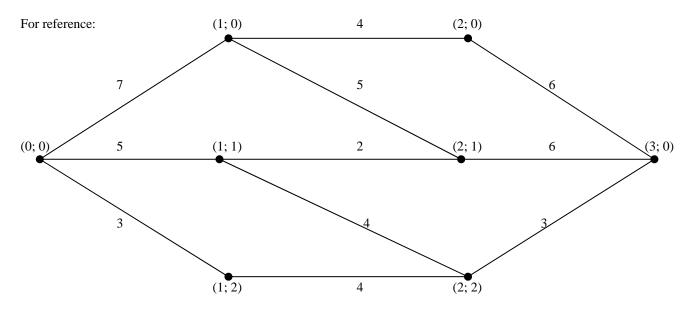

Activity	Duration	Immediate	Number of workers
	(hours)	predecessors	
A: Choose summerhouse	2	-	2
B: Buy slabs for base	1	-	2
C: Take goods home	2	A, B	2
D: Level ground	3	-	1
E: Lay slabs	2	C,D	2
F: Treat wood	3	C	1
G: Make floor, walls and roof	4	E, F	2
H: Fit windows and door	2	G	1
<i>I</i> : Fit patio rail	1	G	1
J: Fit shelving	1	G	1

Part (v)

Activity	Start time
A: Choose summerhouse	0
B: Buy slabs for base	2
C: Take goods home	3
D: Level ground	5
E: Lay slabs	8
F: Treat wood	5
G: Make floor, walls and roof	10
<i>H</i> : Fit windows and door	14
<i>I</i> : Fit patio rail	14
J: Fit shelving	15

I and J may be interchanged


5	(i)	2000 + 0 + 1800 + 0 + 800	M1		2000+1800+800, no backflow	For method: condone one error or omission,
		= 4600	A1		4600 cao	if working is seen
_	(11)		D.1	[2]	XX 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 19 1999 1999
	(ii)	SA because at most 2200 can leave A ET because at most 3300 can enter E	B1 B1		Valid explanation of why $SA < 3000$ Valid explanation of why $ET < 3500$	AC+AG = 1000+1200, calc not req ^d (could have eg $AG \le 800$ so $AC+AG \le 1800$) DE+BE+FE = 800+2000+500, calc not req ^d (eg $BE+BD \le 2000$ so into $E \le 2500$)
		AC and BC because at most 1800 can leave C	B1	[3]	Valid explanation of why <i>AC+BC</i> < 2000	AC+BC = 1000+1000 but $CF = 1800$
	(iii)	eg D S 2000B E T			Assume blanks are zero flow	May list flows
		2000 2500 1300 C 500	M1		A flow of 3300 from S to T	3300 out of S , 3300 into T and flow in = flow out at A , B , C , D , E , F , G Not labelling procedure
		A 500 500 F 800	A1		No arc capacities are exceeded	
		G Cut {S, A, C, F, G}, {B, D, E, T}	B1	[3]	This cut, represented in any way	Or shown on diagram If multiple answers given mark written work rather than diagram
	(iv)	Arrows in original direction of flow show excess capacities equal to arc capacities Arrows opposing original direction of flow	B1		Not reversed Values must be visible	Working will all be on one diagram, try to interpret the intention of the candidate
		show potential backflows equal to 0	B1	[2]		
	(v)	Arrows SB, BE, ET decreased by 2000	B1		Decreasing their excess capacities <i>SBET</i> by 2000	Values must be visible. Follow through their labelling if possible
		Arrows TE, EB, BS increased by 2000	B1	[2]	Increasing their potential backflows <i>SBET</i> by 2000	
Ī	(vi)	eg SACBDT flow 500 SACBDET flow 500	M1		Listing any valid flow augmentation from <i>S</i> to <i>T</i> (route and flow), apart from <i>SBET</i>	
		SAGT flow 800	A1		Valid routes that saturate AC and GT	Valid routes with $AC = 1000$ and $GT = 800$
		New excess capacities and potential backflows	B1		Values updated on diagram appropriately	Flow must be 3800
		Maximum flow = 3800	B1	[4]	3800 stated (cao)	3800 must be written in this part
	(vii)	Showing a valid flow of 3800	B1		Follow through their potential backflows if possible, or a fresh start	May need to check back to (vi) (follow through may not lead to 3800)
		Cut $\{S, A, G\}, \{B, C, D, E, F, T\} = 3800$	M1		Identifying this cut in any way (or in words)	Cut may be marked on diagram
		Max flow = min cut, we have a flow of 3800	A1	F 23	Explaining how this shows that 3800 is max	Need a flow of 3800 seen or described
		and a cut of 3800 so this is the max flow		[3]	flow	correctly


G

For reference:

Parts (iv), (v), (vi), (vii)

Stage 2	State 0 1 2	Action 0 0 0	Working 6 6 3	Suboptimal maximin 6 6 3	B1 B1 M1	[4]	Structure of table correct Actions labelled correctly Stages labelled correctly, working backwards from stage 2 States labelled correctly	Stage, state, action and ≥ 1 other column Condone working forwards for B mark Not (stage; state), must be working backwards Not (stage; state)
 1	1 2	0 1 1 2 2	$ \min(4,6)=4 \\ \min(5,6)=5 \\ \min(2,6)=2 \\ \min(4,3)=3 \\ \min(4,3)=3 \\ \min(7,5)=5 \\ $	5 3 3	M1 A1		Working values correct for stage 1 (4, 5, 2, 3, 3) Suboptimal maximin values correct for stage 1 Follow through if possible from stage 1	If working forwards penalise the A marks and use diagram to deduce values Must be solving maximin problem Follow through if possible from their
0 Route: (0	0	1 2			M1 A1 B1	[5]	Working values correct for stage 0 (5, 3, 3) Suboptimal maximin value correct for stage 0 cao	previous stage Must be solving a maximin problem May be given in reverse Accept with (0; 0) and/or (3; 0) missing Accept 0-0-1-0 but only with all four states and in this order, in this case

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

