GCE

Mathematics (MEI)

Advanced Subsidiary GCE

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Qu	Answer	Mark	Comment
Section A			
1(i)	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	B1	Accept expressions in sin and cos
1(ii)	$\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$	B1	Ans (ii) x Ans (i) attempt evaluation
1(iii)	$\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$	
1(iv)	Reflection in the x axis	B1	
		[5]	
2(i)	$\begin{aligned} & \frac{z+w}{w}=\frac{-1-\mathrm{j}}{-4+\mathrm{j}} \times \frac{-4-\mathrm{j}}{-4-\mathrm{j}} \\ & =\frac{3+5 \mathrm{j}}{17}=\frac{3}{17}+\frac{5}{17} \mathrm{j} \end{aligned}$	M1 A1 A1 [3]	Multiply top and bottom by -4-j Denominator $=17$ Correct numerators
2(ii)	$\begin{aligned} & \|w\|=\sqrt{17} \\ & \arg w=\pi-\arctan \frac{1}{4}=2.90 \\ & w=\sqrt{17}(\cos 2.90+\mathrm{j} \sin 2.90) \end{aligned}$	B1	
		B1	Not degrees
		[3]	c.a.o. Accept $(\sqrt{17}, 2.90)$ Accept 166 degrees
2(iii)	I_{m}^{m}		Accept 166 degrees
		B1 B1 [2]	Correct position Mod w and Arg w correctly shown
3	$\begin{aligned} & \alpha+\beta+\gamma=4=-p \\ & p=-4 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	May be implied
	$\begin{aligned} & (\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & \Rightarrow 16=6+2 q \\ & \Rightarrow q=5 \end{aligned}$	M1	Attempt to use $(\alpha+\beta+\gamma)^{2}$
		A1	o.e. Correct
		A1	c.a.o.

4	$\begin{aligned} & \frac{5 x}{x^{2}+4}<x \\ & \Rightarrow 5 x<x^{3}+4 x \\ & \Rightarrow 0<x^{3}-x \\ & \Rightarrow 0<x(x+1)(x-1) \\ & \Rightarrow x>1,-1<x<0 \end{aligned}$	A1 A1 M1dep* A1 A1 [6]	Method attempted towards factorisation to find critical values $x=0$ $x=1, x=-1$ Valid method leading to required intervals, graphical or algebraic $\begin{aligned} & x>1 \\ & -1<x<0 \end{aligned}$ SC B2 No valid working seen $\begin{aligned} & x>1 \\ & -1<x<0 \end{aligned}$
5	$\begin{aligned} & \sum_{r=1}^{20} \frac{1}{(3 r-1)(3 r+2)} \equiv \frac{1}{3} \sum_{r=1}^{20}\left[\frac{1}{3 r-1}-\frac{1}{3 r+2}\right] \\ & =\frac{1}{3}\left[\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\ldots .+\left(\frac{1}{59}-\frac{1}{62}\right)\right] \\ & =\frac{1}{3}\left(\frac{1}{2}-\frac{1}{62}\right)=\frac{5}{31} \end{aligned}$	M1 A1 A1 M1 A1 [5]	Attempt to use identity - may be implied Correct use of $1 / 3$ seen Terms in full (at least first and last) Attempt at cancelling c.a.o.

Section B

7(i)	$(0,18)$	B1	
	$(-9,0),\left(\frac{8}{3}, 0\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [3]	
7(ii)	$x=2, x=-2$ and $y=3$	B1 B1 B1 [3]	
7(iii)	Large positive $x, y \rightarrow 3^{+}$from above Large negative $x, y \rightarrow 3^{-}$from below (e.g. consider $x=100$, or convincing algebraic argument)	B1 B1 M1 [3]	Must show evidence of working
7(iv)		B1 B1 B1 [3]	3 branches correct Asymptotes correct and labelled Intercepts correct and labelled

Qu	Answer	Mark	Comment
Section B (continued)			
9(i)	$\mathbf{M}=\left(\begin{array}{cc} 2 & -1 \\ 3 & k \end{array}\right)$	$\begin{aligned} & \text { B2 } \\ & {[2]} \end{aligned}$	- 1 each error
9(ii)	\mathbf{M}^{-1} does not exist for $2 k+3=0$	M1	May be implied
	$\begin{aligned} & k=\frac{-3}{2} \\ & \mathbf{M}^{-1}=\frac{1}{2 k+3}\left(\begin{array}{cc} k & 1 \\ -3 & 2 \end{array}\right) \end{aligned}$	A1 B1	Correct inverse
	$\begin{aligned} & \frac{1}{13}\left(\begin{array}{cc} 5 & 1 \\ -3 & 2 \end{array}\right)\binom{1}{21} \\ & =\binom{2}{3} \end{aligned}$	M1 A1ft A1	Attempt to pre-multiply by their inverse Correct matrix multiplication c.a.o.
	$\Rightarrow x=2, y=3$	A1ft [7]	At least one correct
9(iii)	There are no unique solutions	B1 [1]	
9(iv)	(A) Lines intersect (B) Lines parallel (C) Lines coincident	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ [3]	
Section B Total: 36			
			Total: 72

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

