RECOGNISING ACHIEVEMENT
GCE

Mathematics

Advanced GCE

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	$\begin{aligned} & \frac{2 x+3}{(x+3)\left(x^{2}+9\right)} \equiv \frac{A}{x+3}+\frac{B x+C}{x^{2}+9} \\ & A=-\frac{1}{6} \\ & 2 x+3 \equiv A\left(x^{2}+9\right)+(B x+C)(x+3) \\ & B=\frac{1}{6}, \quad C=\frac{3}{2} \\ & \Rightarrow \frac{-1}{6(x+3)}+\frac{x+9}{6\left(x^{2}+9\right)} \end{aligned}$	B1 B1 M1 A1 A1	For correct form seen anywhere with letters or values For correct A (cover up or otherwise) For equating coefficients at least once.(or substituting values) into correct identity. For correct B and C For correct final statement cao, oe
2(i)	Asymptote $x=2$ $\begin{aligned} & y=x-4-\frac{13}{x-2} \\ & \Rightarrow \text { asymptote } y=x-4 \end{aligned}$	$\begin{array}{\|ll} \hline \text { B1 } \\ \text { M1 } & \\ \text { A1 } & \\ & \\ & \\ \hline \end{array}$	For correct equation For dividing out (remainder not required) For correct equation of asymptote (ignore any extras)
(ii)	METHOD 1 $\begin{aligned} & x^{2}-(y+6) x+(2 y-5)=0 \\ & b^{2}-4 a c(\geq 0) \Rightarrow(y+6)^{2}-4(2 y-5)(\geq 0) \\ & \Rightarrow y^{2}+4 y+56(\geq 0) \\ & \Rightarrow(y+2)^{2}+52 \geq 0: \text { this is true } \forall y \end{aligned}$ So y takes all values	M1 M1 A1 A1	N.B. answer given For forming quadratic in x For considering discriminant For correct simplified expression in y soi For completing square (or equivalent) and correct conclusion www
	METHOD 2 Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-4 x+17}{(x-2)^{2}}$ OR $1+\frac{13}{(x-2)^{2}}$ $\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x} \geq 1 \forall x$ so y takes all values.	M1 A1 M1 A1 4	For finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ either by direct differentiation or dividing out first For correct expression oe. For drawing a conclusion For correct conclusion www
	Alternate scheme: Sketching graph Graph correct approaching asymptotes from both side Graph completely correct Explanation about no turning values Correct conclusion	B1 B1 B1 B1	A graph with no explanation can only score 2

3(i)	$\begin{aligned} & x_{1}=3.1 \Rightarrow x_{2}=3.13140, \\ & x_{3}=3.14148 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ & 2 \\ \hline \end{array}$	For correct x_{2} For correct x_{3}
(ii)	$\begin{aligned} & \mathrm{F}^{\prime}(\alpha) \approx \frac{e_{3}}{e_{2}}=\frac{0.00471}{0.01479}=0.318(0.31846) \\ & \mathrm{F}^{\prime}(\alpha)=\frac{1}{\alpha}=0.3178(0.31784) \end{aligned}$	M1 A1 B1 3	For dividing e_{3} by e_{2} For estimate of $\mathrm{F}^{\prime}(\alpha)$ For true $\mathrm{F}^{\prime}(\alpha)$ obtained from $\frac{\mathrm{d}}{\mathrm{~d} x}(2+\ln x)$ TMDP anywhere in (i) (ii) deduct 1 once (but answers must round to given values or A0)
(iii)		B1 B1 B1 3	For $y=x$ and $y=\mathrm{F}(x)$ drawn, crossing as shown For lines drawn to illustrate iteration (Min 2 horizontal and 2 vertical seen) For stating "staircase"

4(i)	$\begin{aligned} & x=r \cos \theta, y=r \sin \theta \\ & \Rightarrow r=\frac{a \cos \theta \sin \theta}{\cos ^{3} \theta+\sin ^{3} \theta} \\ & \text { for } 0 \leq \theta \leq \frac{1}{2} \pi \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \hline & 3 \\ \hline \end{array}$	For substituting for x and y For correct equation oe (Must be $r=\ldots .$.) For correct limits for θ (Condone <)
(ii)	$\begin{aligned} \mathrm{f}\left(\frac{1}{2} \pi-\theta\right) & =\frac{a \cos \left(\frac{1}{2} \pi-\theta\right) \sin \left(\frac{1}{2} \pi-\theta\right)}{\cos ^{3}\left(\frac{1}{2} \pi-\theta\right)+\sin ^{3}\left(\frac{1}{2} \pi-\theta\right)} \\ & =\frac{a \sin \theta \cos \theta}{\sin ^{3} \theta+\cos ^{3} \theta} \end{aligned}$ $\mathrm{f}(\theta)=\mathrm{f}\left(\frac{1}{2} \pi-\theta\right) \Rightarrow \alpha=\frac{1}{4} \pi$	M1 A1 A1 3	N.B. answer given For replacing θ by $\left(\frac{1}{2} \pi-\theta\right)$ in their $\mathrm{f}(\theta)$ For correct simplified form. (Must be convincing) For correct reason for $\alpha=\frac{1}{4} \pi$
(iii)	$r=\frac{a \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^{3}+\left(\frac{1}{\sqrt{2}}\right)^{3}}=\frac{1}{2} \sqrt{2} a$	B1 1	For correct value of r.oe
(iv)		B1 B1 2	Closed curve in 1st quadrant only, symmetrical about $\theta=\frac{1}{4} \pi$ Diagram showing $\theta=0, \frac{1}{2} \pi$ tangential at O

5(i)	$\begin{aligned} & x=\sin y \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=\cos y \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}} \\ & +\sqrt{ } \text { taken since } \sin ^{-1} x \text { has positive gradient } \end{aligned}$	M1 A1 B1 3	For implicit diffn to $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{1}{\cos y}$ oe For using $\sin ^{2} y+\cos ^{2} y=1$ to obtain N.B. Answer given For justifying + sign
(ii)	$\begin{aligned} & \mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1 \\ & \mathrm{f}^{\prime \prime}(x)=\frac{x}{\left(1-x^{2}\right)^{\frac{3}{2}}} \\ & \mathrm{f}^{\prime \prime \prime}(x)=\frac{\left(1-x^{2}\right)^{\frac{3}{2}}+3 x^{2}\left(1-x^{2}\right)^{\frac{1}{2}}}{\left(1-x^{2}\right)^{3}} \\ & \Rightarrow \mathrm{f}^{\prime \prime}(0)=0, \mathrm{f}{ }^{\prime \prime \prime}(0)=1 \\ & \Rightarrow \sin ^{-1} x=x+\frac{1}{6} x^{3} \end{aligned}$	B1 M1 M1 M1 A1 A1	For correct values Use of chain rule to differentiate $\mathrm{f}^{\prime}(x)$ Use of quotient or product rule to differentiate $\mathrm{f}^{\prime \prime}$ (0). For correct values www, soi For correct series (allow 3!) www
	Alternative Method: $\begin{aligned} & \mathrm{f}(0)=0, \mathrm{f}^{\prime}(0)=1 \\ & \mathrm{f}^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{-1 / 2}=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\ldots \\ & \mathrm{f}^{\prime \prime}(x)=x+\frac{3}{2} x^{3}+\ldots \\ & \mathrm{f}^{\prime \prime \prime}(x)=1+\frac{9}{2} x^{2}+\ldots \\ & \Rightarrow \mathrm{f}^{\prime}(0)=1, \mathrm{f} "(0)=0, \mathrm{f}{ }^{\prime \prime \prime}(0)=1 \\ & \Rightarrow \sin ^{-1} x=x+\frac{1}{6} x^{3} \end{aligned}$	B1 M1 M1 A1 A1	For correct values Correct use of binomial Differentiate twice Correct values Correct series
(iii)	$\begin{aligned} & \left(\sin ^{-1} x\right) \ln (1+x) \\ & =\left(x+\frac{1}{6} x^{3}\right)\left(x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}\right) \\ & =x^{2}-\frac{1}{2} x^{3}+\frac{1}{2} x^{4} \end{aligned}$	B1ft M1 A1 A1 	For terms in both series to at least x^{3} f.t. from their (ii) multiplied together For multiplying terms to at least x^{3} For correct series up to $x^{3} \mathbf{w w w}$ For correct term in $x^{4} \mathbf{w w w}$

6(i)	$\begin{aligned} & I_{n}=\int_{0}^{1} x^{n}(1-x)^{\frac{3}{2}} \mathrm{~d} x \\ & =\left[-\frac{2}{5} x^{n}(1-x)^{\frac{5}{2}}\right]_{0}^{1}+\frac{2}{5} n \int_{0}^{1} x^{n-1}(1-x)^{\frac{5}{2}} \mathrm{~d} x \\ & \Rightarrow I_{n}=\frac{2}{5} n \int_{0}^{1} x^{n-1}(1-x)^{\frac{5}{2}} \mathrm{~d} x \\ & \Rightarrow I_{n}=\frac{2}{5} n \int_{0}^{1} x^{n-1}(1-x)(1-x)^{\frac{3}{2}} \mathrm{~d} x \\ & \Rightarrow I_{n}=\frac{2}{5} n I_{n-1}-\frac{2}{5} n I_{n} \\ & \Rightarrow I_{n}=\frac{2 n}{2 n+5} I_{n-1} \end{aligned}$	A1 M1 A1 A1 6	For integrating by parts (correct way round) For correct first stage For splitting $(1-x)^{5 / 2}$ suitably For obtaining correct relation between I_{n} and I_{n-1} For correct result (N.B. answer given)
(ii)	$I_{0}=\left[-\frac{2}{5}(1-x)^{\frac{5}{2}}\right]_{0}^{1}=\frac{2}{5}$ $I_{3}=\frac{6}{11} I_{2}=\frac{6}{11} \times \frac{4}{9} I_{1}=\frac{6}{11} \times \frac{4}{9} \times \frac{2}{7} I_{0}$ $I_{3}=\frac{32}{1155}$	M1 M1 A1 A1 4	For evaluating I_{0} [OR I_{1} by parts] For using recurrence relation 3 [OR 2] times (may be combined together) For 3 [OR 2] correct fractions For correct exact result

PTO for alternative schemes

7(iii)	Alternative method 1 By parts: $\begin{aligned} I= & \int_{0}^{\tanh k} \tanh ^{-1} x \mathrm{~d} x \\ & u=\tanh ^{-1} x \quad \mathrm{~d} v=\mathrm{d} x \\ & \mathrm{~d} u=\frac{1}{1-x^{2}} \mathrm{~d} x \quad v=x \\ \Rightarrow & I=\left[x \tanh ^{-1} x\right]_{0}^{\tanh k}-\int_{0}^{\tanh k} \frac{x}{1-x^{2}} \mathrm{~d} x \\ & =k \tanh k+\frac{1}{2}\left[\ln \left(1-x^{2}\right)\right]_{0}^{\tanh k} \\ & =k \tanh k+\frac{1}{2} \ln \left(1-\tanh ^{2} k\right) \\ & =k \tanh k+\frac{1}{2} \ln \left(\operatorname{sech}^{2} k\right) \\ = & k \tanh k+\ln (\operatorname{sech} k) \end{aligned}$	M1 A1 M1 A1	For integrating by parts (correct way round) For getting this far Dealing with the resulting integral
	Alternative method 2 By substitution Let $y=\tanh ^{-1} x \Rightarrow x=\tanh y$ $\Rightarrow \mathrm{d} x=\operatorname{sech}^{2} y \mathrm{~d} y$ When $x=0, y=0$ When $x=\tanh k, y=k$ $\begin{aligned} & \Rightarrow I=\int_{0}^{\tanh k} \tanh ^{-1} x \mathrm{~d} x=\int_{0}^{k} y \operatorname{sech}^{2} y \mathrm{~d} y \\ & \quad u=y \mathrm{~d} v=\operatorname{sech}^{2} y \mathrm{~d} y \\ & \Rightarrow \mathrm{~d} u=\mathrm{d} y \quad v=\tanh y \\ & \Rightarrow I=[y \tanh y]_{0}^{k}-\int_{0}^{k} \tanh y \mathrm{~d} y \\ & =k \tanh k-\ln \cosh k \end{aligned}$	M1 A1 M1 A1	For substitution to obtain equivalent integral Correct so far For integration by parts (correct way round) Final answer

8(i)	$\begin{aligned} & x=\cosh ^{2} u \Rightarrow \mathrm{~d} u=2 \cosh u \sinh u \mathrm{~d} u \\ & \int \sqrt{\frac{x}{x-1}} \mathrm{~d} x=\int \frac{\cosh u}{\sinh u} 2 \cosh u \sinh u \mathrm{~d} u \\ & =\int 2 \cosh ^{2} u \mathrm{~d} u \\ & =\int(\cosh 2 u+1) \mathrm{d} u=\sinh u \cosh u+u \\ & =x^{\frac{1}{2}}(x-1)^{\frac{1}{2}}+\ln \left(x^{\frac{1}{2}}+(x-1)^{\frac{1}{2}}\right)(+c) \end{aligned}$	B1 M1 A1 M1 A1 M1 A1	For correct result For substituting throughout for x For correct simplified u integral For attempt to integrate $\cosh ^{2} u$ For correct integration For substituting for u For correct result oe as $\mathrm{f}(x)+\ln (\mathrm{g}(x))$
(ii)	$2 \sqrt{3}+\ln (2+\sqrt{3})$	$\begin{array}{lll} \hline \text { B1 } & \\ & 1 \end{array}$	
(iii)	$\begin{aligned} & V=(\pi) \int_{1}^{4} \frac{x}{x-1} \mathrm{~d} x=(\pi)[x+\ln (x-1)]_{1}^{4} \\ & V \rightarrow \infty \end{aligned}$	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \hline & 3 \\ \hline \end{array}$	For attempt to find $\int \frac{x}{x-1} \mathrm{~d} x$ For correct integration (ignore π) For statement that volume is infinite (independent of M mark)

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

