

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6674/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

January 2009 6674 Further Pure Mathematics FP1 (legacy) Mark Scheme

Question Number	Scheme	Ma	rks
1 (a)	$\sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r - \sum_{r=1}^{n} 1 = \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1) - n$	M1, /	41
	Simplifying this expression = $\frac{1}{3}n(n^2 - 4)$ (*)	M1 A1 cso	(4)
(b)	$\sum_{r=1}^{20} (r^2 - r - 1) - \sum_{r=1}^{9} (r^2 - r - 1) = \frac{1}{3} \times 20 \times (20^2 - 4) - \frac{1}{3} \times 9 \times (9^2 - 4)$	M1	
	= 2409	A1	(2)
Alt (b)	$\sum_{r=1}^{20} (r^2 - r - 1) - \sum_{r=1}^{9} (r^2 - r - 1) = \frac{1}{3} \times 20 \times (20^2 - 4) - \frac{1}{3} \times 9 \times (9^2 - 4)$ = 2409 $\sum_{r=1}^{20} (r^2 - r - 1) - \sum_{r=1}^{9} (r^2 - r - 1) =$ $\left(\frac{1}{6} \times 20 \times 21 \times 41 - \frac{1}{2} \times 20 \times 21 - 20\right) - \left(\frac{1}{6} \times 9 \times 10 \times 19 - \frac{1}{2} \times 9 \times 10 - 9\right) M1$ = 2409 $A1$		[6]
Notes	 (a) 1st M: Separating, substituting set results, at least two correct. 2nd M: Either "eliminate" brackets totally or factor x [] where any product of brackets inside [] has been reduced to a single bracket 2nd A: ANSWER GIVEN. No wrong working seen; must have been an intermediate step, e.g. 1/6 n(2n² + 3n + 1 - 3n - 3 - 6). (b) M: Must be ∑²⁰_{r=1} () - ∑⁹_{r=1} () applied. If list terms and add, allow M1 if 11 terms with at most two wrong: [89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379] 		

Question Number	Scheme	Marks
2	3 – i is a root (seen anywhere)	B1
	Attempt to multiply out $[x - (3 + i)][x - (3 - i)]$ {= $x^2 - 6x + 10$ } f(x) = $(x^2 - 6x + 10)(2x^2 - 2x + 1)$	M1 M1, A1
	$x = \frac{2 \pm \sqrt{4-8}}{4}, \qquad x = \frac{1 \pm i}{2}$	*M1, A1 [6]
Notes	1 st M: Using the two roots to form a quadratic factor. 2 nd M: Complete method to find second quadratic factor $2x^2 + ax (+ b)$.	
	3^{rd} *M: Correct method, as far as $x =$, for solving candidate's second quadratic, DEPENDENT on both previous M marks	
Alt	$(i)f(x)/\{x - (3 + i)\} = 2x^3 + (-8 + 2i)x^2 + (7 - 2i)x - 3 + i \ \{=g(x)\}\$ $g(x)/\{x - (3 - i)\} = (2x^2 - 2x + 1)$ Attempt at complete process M2; A1	Lines 2 and 3
	(ii)(2)(x − a+ib)(x − a−ib)(" $x^2 - 6x + 10$ ") = f(x) and compare ≥ 1 coeff. M1 Either −2a −6= −7, or two of 10(b ² + a ²) = 5 or −6(a ² + b ²) −20a = −13, 20+ 2(b ² + a ²) +24a = 33 A1; Complete method for a and b, M1; AnswerA1	Lines 3 and 4

Question Number	Scheme	Marks
3	Identifying 3 as critical value e.g. used in soln Identifying 0 as critical value e.g. used in soln	B1 B1
	$\frac{x^3 + 5x - 12 - 4(x - 3)}{x - 3} > 0 \text{or} (x^3 + 5x - 12)(x - 3) > 4(x - 3)^2 \text{o.e.}$	M1
	$\frac{x(x^2+1)}{x-3} > 0 \qquad \text{or} (x-3)(x^3+x) > 0$	A1
	Using their critical values to obtain inequalities. x < 0 or $x > 3$	M1 A1 cso
Notes	1 st M must be a valid opening strategy.	
	Sketching $y = \frac{x}{x-3}$ or $y = \frac{x(x^2+1)}{x-3}$ should mark as scheme.	
	The result $0 > x > 3$ (poor notation) can gain final M but not A.	
Alt		
	Identifying 3 as critical value e.g. $x = 3$ seen as asymp. Identifying 0 as critical value e.g. pt of intersection on y-axis of	B1
	$y = \frac{x^3 + 5x - 12}{x - 3}$ and $y = 4$	B1
	M1 $y = \frac{x^3 + 5x - 12}{x - 3}$ sketched for $x < 3$ or $y = \frac{x^3 + 5x - 12}{x - 3}$ sketched for $x > 3$ A1 All correct including $y = 4$ drawn	M1, A1
	Using the graph values to obtain one or more inequalities $x < 0$ or $x > 3$	M1 A1

Quest Numb		Scheme	Ma	irks
4	(a)	At st. pt $f'(x) = 0$, $\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ is undefined or at st. pt, tan. // to x-axis, or tan. does not cross x-axis, o.e.	B1	(1)
	(b)	$f'(x) = -1 - 2x\cos(x^2)$ (may be seen in body of work)	M1,	A1
		f(0.6) = 0.0477, f'(0.6) = -2.123 (may be implied by correct answer)	A1	
		Attempt to use $(x_1) = 0.6 - \frac{f(0.6)}{f'(0.6)}$ $[0.6 - \frac{0.0477}{-2.123}]$ = 0.622 (3 dp) (0.6224795)	M1 A1	(5)
	(c)	$f(0.6215) = 1.77 \times 10^{-3} > 0, f(0.6225) = -3.807 \times \times 10^{-4} < 0$	M1	
		Change of sign in $f(x)$ in (0.6215, 0.6225) "so 0.622 correct"	A1	(2)
Notes	5	(b) 2ndM: If the N-R statement applied to 0.6 not seen, can be implied if answer correct; otherwise MO		[8]
		If no values for $f(0.6)$, $f'(0.6)$ seen, they can be implied if final answer correct.		
		 (c) M: For candidates x₁, calculate f(x₁ - 0.0005) and f(x₁ + 0.0005) (or a tighter interval) A: Requires correct values of f(0.6215) and f(0.6225) (or their acceptable values) [may be rounded, e.g. 2×10⁻³, or truncated, e.g - 3.80×10⁻⁴], sign change stated or >0, <0 seen, and conclusion. 		

Question Number	Scheme	м	arks
5 (a)	$z_2 = \frac{12 - 5i}{3 + 2i} \times \frac{3 - 2i}{3 - 2i} = \frac{36 - 24i - 15i - 10}{13}$	M1	
(b)	3+21 $3-21$ $13= 2-3i$	A1	(2)
(b)	P(3, 2)	B1,	B1ft (2)
	Q(2, -3) $P: B1, Q: B1ft from (a)$		
(c)	grad. $OP \times$ grad. $OQ = (\frac{2}{3} \times -\frac{3}{2})$	M1	
	$=-1 \implies \angle POQ = \frac{\pi}{2} (\clubsuit)$	A1	(2)
Alt (c)	(i) $\angle POX = \tan^{-1}\frac{2}{3}, \angle QOX = \tan^{-1}\frac{3}{2}$ $Tan(\angle POQ) = \frac{\frac{2}{3} + \frac{3}{2}}{1 - \frac{2}{3} \times \frac{3}{2}}$ M1		
	$\Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit) \qquad A1$		
(d)	$z = \frac{3+2}{2} + \frac{2+(-3)}{2}i$	M1	
	$=\frac{5}{2}-\frac{1}{2}i$	A1	(2)
(e)	$r = \sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}$	M1	
	$=\frac{\sqrt{26}}{2}$ or exact equivalent	A1	(2) [10]
Notes	 (a) M: Multiplying num. and den. by 3–2i and attempt to simplify num. and denominator . If (c + id)(3 + 2i) = 12 –5i used, need to find 2 equations in c and d and then solve for c and d. (b) Coords seen or clear from labelled axes. S.C: If only P and Q seen(no coords) or correct coords given but P and Q interchanged allow B1B0 (c) If separate arguments are found and then added, allow M1 but not A1 for decimals used e.g. 1.570796327 = ½ π. Alts: Appropriate transformation matrix applied to one point M1; A1 Scalar product used correctly M1; 0 and conclusion A1 Pythagoras' theorem, congruent triangles are other methods seen. (d) M: Any complete method for finding centre. A: Must be complex number; coordinates not sufficient. (e) M: Correct method for radius, or diameter, for candidate's answer to (d) 		

Question Number	Scheme	Ma	rks
6 (a)	$r = \sqrt{x^2 + y^2}, y = r \sin \theta$ $\therefore \sqrt{x^2 + y^2} = \frac{6y}{\sqrt{x^2 + y^2}} \text{or } x^2 + y^2 = 6y \text{o.e.}$	M1, 4	A1 (2)
(b)	$r = 9\sqrt{6}(1 - 2\sin^2\theta) \text{o.e.}$	B1	(1)
(c)	$y = r \sin \theta = 9\sqrt{6}(\sin \theta - 2\sin^3 \theta) \Rightarrow \frac{dy}{d\theta} =; 9\sqrt{6}\cos\theta(1 - 6\sin^2\theta)$ o.e.	M1;A	1
	Or $y = 9\sqrt{6}\sin\theta\cos 2\theta \Rightarrow \frac{dy}{d\theta} = 9\sqrt{6}(\cos 2\theta\cos\theta - 2\sin\theta\sin 2\theta)$ o.e.		
	$\frac{dy}{d\theta} = 0 [\Rightarrow \cos\theta(1 - 6\sin^2\theta) = 0] \text{and attempt to solve}$	M1	
(d)	$(0 \le \theta \le \frac{\pi}{4})$ $\therefore \sin \theta = \frac{1}{\sqrt{6}}$ (*)	A1	(4)
(u)	$r = 9\sqrt{6} \left(1 - 2 \times \frac{1}{6}\right)$	M1	
(e)	$= 6\sqrt{6} \text{or } 14.7 (\text{awrt})$ $C_2: \tan \theta // \text{ to initial line is } y = r \sin \theta = 6\sqrt{6} \times \frac{1}{\sqrt{6}} = 6$	A1 B1	(2)
	$\sqrt{6}$ C ₁ : Circle, centre (0, 3) (cartesian) or (3, $\frac{\pi}{2}$) (polar), passing through (0,0). .: tangent // to initial line has eqn $y = 6 \implies y = 6$ is a common tangent	M1 A1	(3) [12]
Notes	 (a) M1: Use of r = √x² + y² or r² = x² + y², and y = r sin θ (allow x = r sin θ) to form cartesian equation. (b) May be scored in (c) (c) 1st M: Finds y and attempts to find dy/dθ Working with rcos θ instead of r sin θ, can score the M marks. If dy/dx = dy/dθ / dx/dθ used throughout, dy/dx = 0 etc. all marks may be gained (d) M: Using sin θ = 1/√6 to find r (e) Alt. for C₁: M:Find y = 6 sin² θ, (dy/dθ = 12 sin θ cos θ) and solve dy/dθ = 0 A: Find θ = π/2 and conclude that y = 6, so common tangent 		

Question Number	Scheme	Marks
7 (a)	$\frac{dy}{dx} = \lambda x e^{x} + \lambda e^{x}$ Use of the product rule $\frac{d^{2} y}{dx^{2}} = \lambda x e^{x} + \lambda e^{x} + \lambda e^{x}$ $\lambda x e^{x} + 2\lambda e^{x} + 4\lambda x e^{x} + 4\lambda e^{x} - 5\lambda x e^{x} = 4e^{x}$ $\lambda = \frac{2}{3}$ $(\therefore \text{ P.I. is } \frac{2}{3} x e^{x})$	M1 A1 *M1 A1 (4)
(b)	Aux. eqn. $m^2 + 4m - 5 = 0$ (m-1)(m+5) = 0 m = 1 or m = -5 C.F. is $y = Ae^x + Be^{-5x}$ Gen. soln. is $(y =) \frac{2}{3}xe^x + Ae^x + Be^{-5x}$ [f.t: Candidate's C.F + P.I.]	M1 M1 A1 A1ft (4)
(c)	$-\frac{2}{3} = A + B$ $\frac{dy}{dx} = \frac{2}{3}xe^{x} + \frac{2}{3}e^{x} + Ae^{x} - 5Be^{-5x}$ $-\frac{4}{3} = \frac{2}{3} + A - 5B$ A1 two correct unsimplified eqns. $-2 = A - 5B$ $\frac{4}{3} = 6B$ $B = \frac{2}{9}, A = -\frac{8}{9}$ $y = \frac{2}{3}xe^{x} - \frac{8}{9}e^{x} + \frac{2}{9}e^{-5x}$	M1 M1 A1 M1 A1 (5)
Notes	 (a) 2nd M dependent on first M. (b) 1st M: Attempt to solve A.E. 2nd M: Only allow C.F. of form Ae^{ax} + Be^{bx}, where a and b are real. If seen in (a), award marks there. PI must be of form λ xe^x (λ ≠ 0) to gain final A1 f.t. (c) 1st M: Using x = 0, y = -²/₃ in their general solution. 2nd M: Differentiating their general solution {C.F. + P.I.} (must have term in λ xe^x) (condone slips) and using x = 0, dy/dx = -4/3 to find an equation in A and B. 3rd M: Solving simultaneous equations to find a value of A and a value of B. Can be awarded if only C.F. found. Insist on y = in this part. 	[13]

Questi Numbe		Scheme	Marks
Rumby			
8	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{t^2} \times \frac{\mathrm{d}t}{\mathrm{d}x} \qquad \text{o.e.}$	M1, A1
		$\sin x \times -\frac{1}{t^2} \times \frac{\mathrm{d}t}{\mathrm{d}x} + \frac{1}{t} \cos x = \frac{1}{t^2}$	M1
		$\frac{\mathrm{d}t}{\mathrm{d}x} - t\cot x = -\csc x (\clubsuit)$	A1 cso(4)
	(b)	$I = e^{\int -\cot x dx}$ $= e^{-\ln \sin x}$	M1
		$=\frac{1}{\sin x}$ or cosecx	A1
		$\frac{1}{\sin x}\frac{\mathrm{d}t}{\mathrm{d}x} - t\frac{\cos x}{\sin^2 x} = -\mathrm{cosec}^2 x$	M1
		$\frac{t}{\sin x} = \int -\cos ec^2 x dx \text{or} \frac{d}{dx} \left(\frac{t}{\sin x} \right) = -\cos ec^2 x$	A1f.t.
		$\frac{t}{\sin x} = \cot x (+c) \qquad \text{o.e.}$	A1 cso (5)
		$\cos x + c \sin x$	M1, A1 (2)
	(d)	$\frac{\sqrt{2}}{3} = \frac{1}{\frac{1}{\sqrt{2}} + \frac{c}{\sqrt{2}}}$ $\sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{c}{\sqrt{2}}\right) = 3$ $c = 2$ $x = \frac{\pi}{2}, y = \frac{1}{2}$ ft on their c	M1
		$\sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{c}{\sqrt{2}}\right) = 3$	
		c=2 $x = \frac{\pi}{2}, y = \frac{1}{2}$ ft on their c	A1 A1ft (3)
		2 2 2	[14]
Notes		(a) 1 st M: Use of $\frac{dy}{dt} \cdot \frac{dt}{dx}$ (even if integrated 1/t)	
		2^{nd} M: Substituting for $\frac{dy}{dx}$, y, y^2 to form d.e. in x and t only	
		(b) 1^{st} M: For $e^{\int -\cot x dx}$ (allow $e^{\int \cot x dx}$) and attempt at integrating 2^{nd^*} M: Multiplying by integrating factor (requires at least two terms "correct" for their IF.) (can be implied) 3rdA1f.t: is only for those who have I.F. = sinx or - sinx	
		$\frac{d}{dr}(t\sin x) = -1$ equivalent integral	
		(c) M: Substituting to find $t = 1/y$ in their solution to (b)	
		(d) M: Using $y = \frac{\sqrt{2}}{3}$, $x = \frac{\pi}{4}$ to find a value for <i>c</i> .	