Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6674/01)

January 2009
 6674 Further Pure Mathematics FP1 (legacy) Mark Scheme

Question Number	Scheme	Marks
1 (a) (b)	$\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-\sum_{r=1}^{n} 1=\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-n$ Simplifying this expression $\begin{gather*} =\frac{1}{3} n\left(n^{2}-4\right) \tag{4}\\ \sum_{r=1}^{20}\left(r^{2}-r-1\right)-\sum_{r=1}^{9}\left(r^{2}-r-1\right)=\frac{1}{3} \times 20 \times\left(20^{2}-4\right)-\frac{1}{3} \times 9 \times\left(9^{2}-4\right) \\ =2409 \end{gather*}$	M1, A1 M1 A1 cso M1 A1 (2)
Alt (b)	$\begin{aligned} & \sum_{r=1}^{20}\left(r^{2}-r-1\right)-\sum_{r=1}^{9}\left(r^{2}-r-1\right)= \\ & \left(\begin{array}{rl} \left.\frac{1}{6} \times 20 \times 21 \times 41-\frac{1}{2} \times 20 \times 21-20\right) \\ = & -\left(\frac{1}{6} \times 9 \times 10 \times 19-\frac{1}{2} \times 9 \times 10-9\right) \end{array}\right. \end{aligned}$	[6]
Notes	(a) $1^{\text {st }} \mathrm{M}$: Separating, substituting set results, at least two correct. $2^{\text {nd }} \mathrm{M}$: Either "eliminate" brackets totally or factor x [......] where any product of brackets inside [....] has been reduced to a single bracket $2^{\text {nd }} A$: ANSWER GIVEN. No wrong working seen; must have been an intermediate step, e.g. $\frac{1}{6} n\left(2 n^{2}+3 n+1-3 n-3-6\right)$. (b) M : Must be $\sum_{r=1}^{20}(\ldots)-.\sum_{r=1}^{9}(\ldots)$ applied. If list terms and add, allow M1 if $\mathbf{1 1}$ terms with at most two wrong: [89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379]	

Question Number	Scheme	Marks
2	$3-\mathrm{i}$ is a root (seen anywhere)	B1
	Attempt to multiply out $[x-(3+\mathrm{i})][x-(3-\mathrm{i})] \quad\left\{=x^{2}-6 x+10\right\}$ $\mathrm{f}(x)=\left(x^{2}-6 x+10\right)\left(2 x^{2}-2 x+1\right)$	M1 M1, A1
	$\underline{2 \pm \sqrt{4-8}} \quad 1 \pm \mathrm{i}$	
	$x=\frac{2 \pm \sqrt{4-8}}{4}, \quad x=\frac{1 \pm 1}{2}$	*M1, A1
Notes	$1^{\text {st }} \mathrm{M}$: Using the two roots to form a quadratic factor. $2^{\text {nd }} \mathrm{M}$: Complete method to find second quadratic factor $2 x^{2}+\mathrm{ax}(+\mathrm{b})$.	
	$3^{\text {rd }} * \mathrm{M}$: Correct method, as far as $x=\ldots$, for solving candidate's second quadratic, DEPENDENT on both previous M marks	
Alt		Lines 2 and 3
	Either $-2 \mathrm{a}-6=-7$, or two of $10\left(b^{2}+a^{2}\right)=5$ or $-6\left(a^{2}+b^{2}\right)-20 a=-13$, $20+2\left(b^{2}+a^{2}\right)+24 a=33$ A1; Complete method for a and $b, M 1$; AnswerA1	Lines 3 and 4

Question Number	Scheme	Marks
3	Identifying 3 as critical value e.g. used in soln Identifying 0 as critical value e.g. used in soln	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$
	$\frac{x^{3}+5 x-12-4(x-3)}{x-3}>0 \quad$ or $\quad\left(x^{3}+5 x-12\right)(x-3)>4(x-3)^{2}$ o.e.	M1
	$\frac{x\left(x^{2}+1\right)}{x-3}>0 \quad \text { or } \quad(x-3)\left(x^{3}+x\right)>0$	A1
	Using their critical values to obtain inequalities. $x<0 \text { or } x>3$	M1 A1 cso
Notes	$1^{\text {st }} \mathrm{M}$ must be a valid opening strategy. Sketching $y=\frac{x}{x-3}$ or $y=\frac{x\left(x^{2}+1\right)}{x-3}$ should mark as scheme.	
	The result $0>x>3$ (poor notation) can gain final M but not A .	
Alt		
	Identifying 3 as critical value e.g. $x=3$ seen as asymp.	B1
	Identifying 0 as critical value e.g. pt of intersection on y-axis of $y=\frac{x^{3}+5 x-12}{x-3}$ and $y=4$	
	M1 $y=\frac{x^{3}+5 x-12}{x-3}$ sketched for $x<3$ or $y=\frac{x^{3}+5 x-12}{x-3}$ sketched for $x>3$ A1 All correct including $\mathrm{y}=4$ drawn	M1, A1
	Using the graph values to obtain one or more inequalities $x<0 \text { or } x>3$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$

Question Number	Scheme	Marks
(b) (c) (d)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{t^{2}} \times \frac{\mathrm{d} t}{\mathrm{~d} x} \\ & \begin{array}{l} \sin x \times-\frac{1}{t^{2}} \times \frac{\mathrm{d} t}{\mathrm{~d} x}+\frac{1}{t} \cos x=\frac{1}{t^{2}} \\ \frac{\mathrm{~d} t}{\mathrm{~d} x}-t \cot x=-\operatorname{cosec} x \quad \\ \mathrm{I}=\mathrm{e}^{\int-\cot x \mathrm{~d} x} \\ =\mathrm{e}^{-\ln \sin x} \\ =\frac{1}{\sin x} \text { or } \operatorname{cosec} x \end{array} \\ & \frac{1}{\sin x} \frac{\mathrm{~d} t}{\mathrm{~d} x}-t \frac{\cos x}{\sin ^{2} x}=-\operatorname{cosec}^{2} x \\ & \frac{t}{\sin x}=\int-\operatorname{cosec}^{2} x \mathrm{~d} x \quad \text { or } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{t}{\sin x}\right)=-\operatorname{cosec}^{2} x \\ & \frac{t}{\sin x}=\cot x \quad(+c) \quad \text { o.e. } \\ & t=\cos x+c \sin x \Rightarrow y=\frac{1}{\cos x+c \sin x} \quad(*) \\ & \frac{\sqrt{2}}{3}=\frac{1}{\frac{1}{\sqrt{2}}+\frac{c}{\sqrt{2}}} \\ & \sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{c}{\sqrt{2}}\right)=3 \\ & x=2 \\ & x=\frac{\pi}{2}, y=\frac{1}{2} \end{aligned}$ ft on their c (a) $1^{\text {st }} \mathrm{M}$: Use of $\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x} \quad$ (even if integrated $1 / \mathrm{t}$) $2^{\text {nd }} \mathrm{M}$: Substituting for $\frac{\mathrm{d} y}{\mathrm{~d} x}, y, y^{2}$ to form d.e. in x and t only (b) $1^{\text {st }} \mathrm{M}$: For $\mathrm{e}^{\int-\cot x d x}$ (allow $\mathrm{e}^{\int \cot x \mathrm{dx}}$) and attempt at integrating $2^{\text {nd* }} \mathrm{M}$: Multiplying by integrating factor (requires at least two terms "correct" for their IF.) (can be implied) 3rdA1f.t: is only for those who have I.F. $=\sin x$ or $-\sin x$ $\frac{\mathrm{d}}{\mathrm{d} x}(t \sin x)=-1 \quad$ equivalent integral (c) M: Substituting to find $t=1 / y$ in their solution to (b) (d) M: Using $\mathrm{y}=\frac{\sqrt{2}}{3}, x=\frac{\pi}{4}$ to find a value for c.	M1, A1 M1 A1 cso(4) M1 A1 M1 A1f.t. A1 cso (5) M1, A1 (2) M1 A1 A1ft (3) [14]

