

Mark Scheme (Results) January 2010

GCE

Further Pure Mathematics FP1 (6674)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010

All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 6674 Further Pure Mathematics FP1 Mark Scheme

Question Number	Scheme		
Q1	(a) $\frac{a+ib}{3-i} \times \frac{3+i}{3+i} = \frac{(3a-b)+i(a+3b)}{10}$ (A1 for numerator, A1 for 10)	M1 A1 A1	(3)
	(b) $ z_1 = \sqrt{a^2 + (-2a)^2} = \sqrt{5a^2} = a\sqrt{5}$ (*)	M1 A1	(2)
	(c) $\arg \frac{z_1}{z_2} = \arctan \frac{a+3b}{3a-b} = \arctan (-1), = -\frac{\pi}{4} \left(\text{or } \frac{7\pi}{4}, \text{ or } -45^\circ, \text{ or } 315^\circ \right)$	M1 A1ft, A1	(3) [8]
	(c) The <u>final</u> A1 requires a single answer, so for example: $\arctan(-1) = -\frac{\pi}{4} \text{ or } \frac{3\pi}{4} \text{ is A0}$		

Question Number	Scheme	Marks	
Q2	(a) $f(2) = 2\cos 2 - 4 + 5$ (= 0.1677)		
	$f(2.1) = 2.1\cos 2.1 - 4.2 + 5 (= -0.2601)$ Values correct (to 1 s.f.). Change of sign \Rightarrow Root	M1 A1	(2)
	(b) $f'(x) = \cos x - x \sin x - 2$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - \frac{0.1677}{-4.2347}, = 2.04$	M1 A1 M1 A1, A1	(5)
	(c) $f(2.035) =$ and $f(2.045) =$	M1	
	0.0189 and -0.0238 Change of sign \Rightarrow Correct to 2 d.p.	A1	(2) [9]
	(c) The M1 is also given for evaluating f at the ends of a 'tighter' interval.		

Question Number	Scheme	Mark	S
Q3	(a) $5-2i$ is a root (b) $(x-(5+2i))(x-(5-2i)) = x^2-10x+29$ $x^3-12x^2+cx+d=(x^2-10x+29)(x-2)$		(1)
	c = 49, $d = -58$	A1, A1	(5)
	(c) Conjugate pair in 1 st and 4 th quadrants, (symmetrical about real axis).	B1	
	Fully correct, labelled.	B1	(2)
			[8]
	(b) 1^{st} M: Form brackets using $(x - \alpha)(x - \beta)$ and expand. 2^{nd} M: Achieve a 3-term quadratic with no i's.		
	(b) Alternative: Substitute a root (usually $5 + 2i$) and expand brackets $(5 + 2i)^3 - 12(5 + 2i)^2 + c(5 + 2i) + d = 0$	M1	
	(125+150i-60-8i)-12(25+20i-4)+(5c+2ci)+d=0 $(2^{nd}$ M for achieving an expression with no powers of i) Equate real and imaginary parts c=49, $d=-58$		

Question Number	Scheme	Marks
Q4	$m^2 + 6m + 9 = 0 m = -3$	B1
	C.F. $(x =) (At + B)e^{-3t}$	M1 A1
	$P.I. x = p\cos t + q\sin t$	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -p\sin t + q\cos t \qquad \qquad \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -p\cos t - q\sin t$	M1
	$-p\cos t - q\sin t - 6p\sin t + 6q\cos t + 9p\cos t + 9q\sin t = 5\cos t$	M1
	-6p + 8q = 0 and $8p + 6q = 5$	A1
	Solve simultaneously to find either p or q :	M1
	$p = \frac{2}{5} \text{ and } q = \frac{3}{10}$	A1
	General solution: $(x =)$ $(At + B)e^{-3t} + \frac{2}{5}\cos t + \frac{3}{10}\sin t$	A1ft
		[10]
	The final A1ft is dependent on the 3 preceding M marks (for the P.I.)	

Question Number	Scheme	Marks	
Q5	(a) $1 = A(2r+5) + B(2r+1)$, and find values of A and B $\frac{1}{4(2r+1)} - \frac{1}{4(2r+5)}$	M1 A1 (2)	
	(b) $r = 1:$ $\frac{1}{4} \left(\frac{1}{3} - \frac{1}{7} \right)$	B1ft	
	$r = 2: \frac{1}{4} \left(\frac{1}{5} - \frac{1}{9} \right)$ $r = n - 1: \frac{1}{4} \left(\frac{1}{2n - 1} - \frac{1}{2n + 3} \right)$		
	$r = n$: $\frac{1}{4} \left(\frac{1}{2n+1} - \frac{1}{2n+5} \right)$		
	Sum: $\frac{1}{4} \left(\frac{1}{3} + \frac{1}{5} - \frac{1}{2n+3} - \frac{1}{2n+5} \right)$	M1 A1	
	$= \frac{1}{4} \left(\frac{8(2n+3)(2n+5) - 15(2n+5) - 15(2n+3)}{15(2n+3)(2n+5)} \right)$	M1	
	$= \frac{1}{4} \left(\frac{32n^2 + 128n + 120 - 30n - 75 - 30n - 45)}{15(2n+3)(2n+5)} \right)$	A1	
	$=\frac{1}{4}\left(\frac{32n^2+68n}{15(2n+3)(2n+5)}\right)$		
	$=\frac{n(8n+17)}{15(2n+3)(2n+5)}$ (c = 17)	A1	(6)
			[8]
	(b) B1ft for one correct difference (ft <i>A</i> and <i>B</i>).		
	M1 A1 M1 A1: The $\frac{1}{4}$ is not needed for these marks, only for the final A1.		

Question Number	Scheme	Marks	
Q6	(a) $r = \frac{a}{2}$ $\sin 2\theta = \frac{1}{2}$ $2\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$ $\theta = \frac{\pi}{12}, \frac{5\pi}{12}$	M1 A1, A1	(3)
	(b) $\sin^2 2\theta = \frac{1}{2}(1 - \cos 4\theta)$	B1	
	$\frac{a^2}{2} \int \sin^2 2\theta \mathrm{d}\theta = \dots$	M1	
	$\pm \left[\theta - \frac{\sin 4\theta}{4}\right] \qquad (Correct integration of \pm (1 - \cos 4\theta))$	A1	
	$\left[\dots \right]_{\frac{\pi}{2}}^{5\pi/12} = \dots, = \frac{a^2}{4} \left(\frac{5\pi}{12} - \left(-\frac{\sqrt{3}}{8} \right) - \frac{\pi}{12} + \frac{\sqrt{3}}{8} \right) = a^2 \left(\frac{\pi}{12}, +\frac{\sqrt{3}}{16} \right)$	M1, A1, A1	(6)
	712		[9]
	(b) 1 st M: Use of $\frac{1}{2} \int r^2 d\theta$ with some integration attempt.		
	2 nd M: Correct use of their limits.		
	N.B. Other methods are possible, e.g. $\left(\text{e.g. 2}\left[\begin{array}{c} \dots \\ \\ \\ \end{array}\right]_{n\pi/2}^{\pi/4}\right)$		
	Slips such as omitting the <i>a</i> or not squaring the <i>a</i> : just the final A mark is lost.		

Question Number	Scheme	Mark	S
Q7	(a) $10 + 3x - x^2 = 3x - 1$ $x^2 = \dots$ or $x = \dots$, $\sqrt{11} (\beta)$ $10 + 3x - x^2 = 1 - 3x$	M1, A1	
	$x^{2} - 6x - 9 = 0$ $x = \frac{6 \pm \sqrt{72}}{2}$ or equiv.	A1	(E)
	$3-3\sqrt{2}$ or exact equiv. (α)	A1	(5)
	(b) $3 - 3\sqrt{2} < x < \sqrt{11}$	M1 A1ft	(2)
	(c) Forming inequalities using all their four x values $(\pm \sqrt{11} \text{ and } 3 \pm 3\sqrt{2})$ $-\sqrt{11} < x < 3 - 3\sqrt{2}$, $\sqrt{11} < x < 3 + 3\sqrt{2}$	M1 B1, B1	(3) [10]
	Answers with decimals (3 s.f. accuracy) are acceptable in (b) and (c). (b) M: Answer including $x < \beta$ (positive β) or $x > \alpha$ (negative α). Alft requires negative α and positive β .		[.0]

Scheme	Marks				
(a) $z = \frac{1}{y^2}$	B1				
$-\frac{y^3}{2}\frac{\mathrm{d}z}{\mathrm{d}x} + y = 4xy^3$	M1				
$-\frac{y^2}{2}\frac{dz}{dx} + 1 = 4xy^2 \qquad -\frac{1}{2z}\frac{dz}{dx} + 1 = \frac{4x}{z}, \qquad \frac{dz}{dx} - 2z = -8x \tag{*}$	M1, A1 (4)				
(b) Integrating factor $e^{\int -2dx} = e^{-2x}$	B1				
$ze^{-2x} = -8\int xe^{-2x} dx$ or $\frac{d}{dx}(ze^{-2x}) = -8xe^{-2x}$	M1				
$\int xe^{-2x} dx = \left\{ \frac{xe^{-2x}}{-2} + \frac{1}{2} \int e^{-2x} dx \right\}$	M1 A1				
$ze^{-2x} = 4xe^{-2x} + 2e^{-2x} + C$, $z = 4x + 2 + Ce^{2x}$					
(The second of these M marks is dependent on the first, and both are dependent on the use of an integrating factor). $y = \frac{1}{\sqrt{4x + 2 + Ce^{2x}}}$ (or equiv.)					
					(c) $\frac{dy}{dx} = 0$: $y = 4xy^3$ $y = \frac{1}{2\sqrt{x}}$ (*)
	[13]				
(b) Alternative for first 6 marks: C.F. $z = Ce^{2x}$ B1					
P.I. $z = px + q$, $\frac{dz}{dx} = p$ M1					
p - 2px - 2q = -8x M1					
$p = 4 q = 2$ $z = 4x + 2 + Ce^{2x}$ M1 A1 $M1$					
	(a) $z = \frac{1}{y^2}$ $\frac{dz}{dx} = -\frac{2}{y^3} \frac{dy}{dx}$ $-\frac{y^3}{2} \frac{dz}{dx} + y = 4xy^3$ $-\frac{y^2}{2} \frac{dz}{dx} + 1 = 4xy^2$ $-\frac{1}{2z} \frac{dz}{dx} + 1 = \frac{4x}{z}$, $\frac{dz}{dx} - 2z = -8x$ (*) (b) Integrating factor $e^{\int -2dx} = e^{-2x}$ $ze^{-2x} = -8\int xe^{-2x} dx$ or $\frac{d}{dx}(ze^{-2x}) = -8xe^{-2x}$ $\int xe^{-2x} dx = \left\{\frac{xe^{-2x}}{-2} + \frac{1}{2}\int e^{-2x} dx\right\}$ $ze^{-2x} = 4xe^{-2x} + 2e^{-2x} + C$, $z = 4x + 2 + Ce^{2x}$ (The second of these M marks is dependent on the first, and both are dependent on the use of an integrating factor). $y = \frac{1}{\sqrt{4x + 2 + Ce^{2x}}}$ (or equiv.) (c) $\frac{dy}{dx} = 0$: $y = 4xy^3$ $y = \frac{1}{2\sqrt{x}}$ (*) (b) Alternative for first 6 marks: C.F. $z = Ce^{2x}$ B1 P.I. $z = px + q$, $\frac{dz}{dx} = p$ M1 $p - 2px - 2q = -8x$ M1 $p = 4$ $q = 2$ M1 M1 A1				

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH