RECOGNISING ACHIEVEMENT

ADVANCED GCE

Additional materials (enclosed): None
Additional materials (required):
Answer Booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions in Section A and one question from Section B.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

Section A (54 marks)

Answer all the questions

1 (a) A curve has cartesian equation $\left(x^{2}+y^{2}\right)^{2}=3 x y^{2}$.
(i) Show that the polar equation of the curve is $r=3 \cos \theta \sin ^{2} \theta$.
(ii) Hence sketch the curve.
(b) Find the exact value of $\int_{0}^{1} \frac{1}{\sqrt{4-3 x^{2}}} \mathrm{~d} x$.
(c) (i) Write down the series for $\ln (1+x)$ and the series for $\ln (1-x)$, both as far as the term in x^{5}.
(ii) Hence find the first three non-zero terms in the series for $\ln \left(\frac{1+x}{1-x}\right)$.
(iii) Use the series in part (ii) to show that $\sum_{r=0}^{\infty} \frac{1}{(2 r+1) 4^{r}}=\ln 3$.

2 You are given the complex numbers $z=\sqrt{32}(1+\mathrm{j})$ and $w=8\left(\cos \frac{7}{12} \pi+\mathrm{j} \sin \frac{7}{12} \pi\right)$.
(i) Find the modulus and argument of each of the complex numbers $z, z^{*}, z w$ and $\frac{z}{w}$.
(ii) Express $\frac{z}{w}$ in the form $a+b \mathrm{j}$, giving the exact values of a and b.
(iii) Find the cube roots of z, in the form $r \mathrm{e}^{\mathrm{j} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(iv) Show that the cube roots of z can be written as

$$
\begin{equation*}
k_{1} w^{*}, \quad k_{2} z^{*} \quad \text { and } \quad k_{3} \mathrm{j} w \tag{5}
\end{equation*}
$$

where k_{1}, k_{2} and k_{3} are real numbers. State the values of k_{1}, k_{2} and k_{3}.

3 (i) Given the matrix $\mathbf{Q}=\left(\begin{array}{rrr}2 & -1 & k \\ 1 & 0 & 1 \\ 3 & 1 & 2\end{array}\right)$ (where $k \neq 3$), find \mathbf{Q}^{-1} in terms of k.
Show that, when $k=4, \mathbf{Q}^{-1}=\left(\begin{array}{rrr}-1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1\end{array}\right)$.
The matrix \mathbf{M} has eigenvectors $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right)$, with corresponding eigenvalues $1,-1$ and 3 respectively.
(ii) Write down a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{P}^{-1} \mathbf{M P}=\mathbf{D}$, and hence find the matrix \mathbf{M}.
(iii) Write down the characteristic equation for \mathbf{M}, and use the Cayley-Hamilton theorem to find integers a, b and c such that $\mathbf{M}^{4}=a \mathbf{M}^{2}+b \mathbf{M}+c \mathbf{I}$.

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions
4 (i) Starting from the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, prove that

$$
\begin{equation*}
\cosh ^{2} x-\sinh ^{2} x=1 \tag{3}
\end{equation*}
$$

(ii) Solve the equation $4 \cosh ^{2} x+9 \sinh x=13$, giving the answers in exact logarithmic form.
(iii) Show that there is only one stationary point on the curve

$$
y=4 \cosh ^{2} x+9 \sinh x,
$$

and find the y-coordinate of the stationary point.
(iv) Show that $\int_{0}^{\ln 2}\left(4 \cosh ^{2} x+9 \sinh x\right) \mathrm{d} x=2 \ln 2+\frac{33}{8}$.

Option 2: Investigation of curves
This question requires the use of a graphical calculator.
5 A curve has parametric equations $x=\lambda \cos \theta-\frac{1}{\lambda} \sin \theta, y=\cos \theta+\sin \theta$, where λ is a positive constant.
(i) Use your calculator to obtain a sketch of the curve in each of the cases

$$
\begin{equation*}
\lambda=0.5, \quad \lambda=3 \quad \text { and } \quad \lambda=5 . \tag{3}
\end{equation*}
$$

(ii) Given that the curve is a conic, name the type of conic.
(iii) Show that y has a maximum value of $\sqrt{2}$ when $\theta=\frac{1}{4} \pi$.
(iv) Show that $x^{2}+y^{2}=\left(1+\lambda^{2}\right)+\left(\frac{1}{\lambda^{2}}-\lambda^{2}\right) \sin ^{2} \theta$, and deduce that the distance from the origin of any point on the curve is between $\sqrt{1+\frac{1}{\lambda^{2}}}$ and $\sqrt{1+\lambda^{2}}$.
(v) For the case $\lambda=1$, show that the curve is a circle, and find its radius.
(vi) For the case $\lambda=2$, draw a sketch of the curve, and label the points A, B, C, D, E, F, G, H on the curve corresponding to $\theta=0, \frac{1}{4} \pi, \frac{1}{2} \pi, \frac{3}{4} \pi, \pi, \frac{5}{4} \pi, \frac{3}{2} \pi, \frac{7}{4} \pi$ respectively. You should make clear what is special about each of these points.

