GCE

Mathematics (MEI)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i) The data are not evenly spaced so (ordinary) differences will not work
[E1]
Lagrange's method is not well suited to increasing the degree of the approximating polynomial because it requires complete recalculation
[subtotal 2]
[M1A1]
[M1A1]
$f(3)$ approximately zero, but difficult to say whether -0.05 or $-0.06,-0.1$ or 0.0 .
[M1A1]
[M1A1]
[M1A1]
[M1A1]
[E1E1]
[subtotal 14]

(iv)	x	f	1DD	2DD	3DD	4DD	5DD		
	1.91	0.498							
	4.10	-0.544	-0.4758						
	4.91	-0.740	-0.24198	0.077941					
	0.93	0.897	-0.41131	0.053417	0.025025				
	0.09	1.076	-0.2131	-0.04112	0.023576	0.000796			
	6.04	-0.900	-0.3321	-0.02329	0.015782	-0.00402	-0.00117		
		user-specified x :	2.89	0.498				adjust SS to allow	
				-0.46628	0.032			user-specified x :	[M1A1]
				-0.09242	-0.061				
				0.056679	-0.004			trial and error:	[M1A1]
				0.003738	0.000			answer:	[A1]
									[subtotal 5]
									[TOTAL 24]

2 (i) $T_{n}-I=A_{2} h^{2}+A_{4} h^{4}+A_{6} h^{6}+\ldots$
$T_{2 n}-I=A_{2}(h / 2)^{2}+A_{4}(h / 2)^{4}+A_{6}(h / 2)^{6}+\ldots$
$4\left(T_{2 n}-I\right)-\left(T_{n}-I\right)=b_{4} h^{4}+b_{6} h^{6}+\ldots$
$4 T_{2 n}-T_{n}-3 I=b_{4} h^{4}+b_{6} h^{6}+\ldots$
$\left(4 T_{2 n}-T_{n}\right) / 3-I=B_{4} h^{4}+B_{6} h^{6}+\ldots$
($T_{n}{ }^{*}=\left(4 T_{2 n}-T_{n}\right) / 3$ has error of order h^{4} as given)
$T_{n}{ }^{* *}=\left(16 T_{2 n}{ }^{*}-T_{n}{ }^{*}\right) / 15$ has error of order h^{6}
[B1]
[subtotal 6]
(ii)

(iii)

x	$f(x)$	T	T*	$\mathrm{T}^{* *}$	$\mathrm{T}^{* * *}$	($\mathrm{T}^{* * * *}$)	
0	0						
3.141593	2.22E-16	3.49E-16					
1.570796	0.693147	1.088793	1.451724				
0.785398	0.5348						f:
2.356194	0.5348	1.384458	1.483014	1.485099			
0.392699	0.324026						T:
1.178097	0.654344						
1.963495	0.654344						T.
2.748894	0.324026	1.460639	1.486033	1.486234	1.486252		$T^{* *}$:
0.19635	0.178222						$T^{* * *}$
0.589049	0.441842						
0.981748	0.605119						answer:
1.374447	0.683493						
1.767146	0.683493						
2.159845	0.605119						
2.552544	0.441842						
2.945243	0.178222	1.479855	1.48626	1.486275	1.486276	1.486276	

[subtotal 2]
[subtotal 11]
(iv) Spreadsheet as above, but seen to work for user-specified c in place of 3.141593

Sequence of values representing trial and error towards solution:

c	4	4.5	4.4	4.45	4.44	4.442
I	0.977343	-0.20713	0.133659	-0.02687	0.006681	0.00003

Answer 4.442 to 3 decimal places

3 (i) Modified Euler method

h	x	y	k 1	k 2	new y
0.1	1	1	0.141421	0.150185	1.145803
	1.1	1.145803	0.150346	0.159856	1.300904
	1.2	1.300904	0.160034	0.170271	1.466056
	1.3	1.466056	0.170466	0.181415	1.641997
	1.4	1.641997	0.181626	0.193273	1.829446
	1.5	1.829446	0.193499	0.205833	2.029112
	1.6	2.029112	0.206072	0.219085	2.24169
	1.7	2.24169	0.219337	0.23302	2.467869
	1.8	2.467869	0.233284	0.247633	2.708328
	1.9	2.708328	0.247908	0.262916	2.963739
	2	2.963739			

setup:
[M2]
first run:
[A2]
further runs: [A1A1A1]
differences:
ratios:
[M1]
[M1A1]
Correct to $4 \mathrm{dp}, \alpha=2.9644$
Ratio of differences indicates 2nd order convergence
[subtotal 12]
(ii) Predictor corrector method

h	x	y	y pred	y corr1	y corr2	y corr3
0.1	1	1	1.141421	1.145803	1.145884	1.145885
	1.1	1.145885	1.296234	1.300989	1.301078	1.30108
	1.2	1.30108	1.46112	1.466239	1.466336	1.466338
	1.3	1.466338	1.636815	1.64229	1.642395	1.642397
	1.4	1.642397	1.824039	1.829862	1.829975	1.829978
	1.5	1.829978	2.023497	2.029664	2.029784	2.029786
	1.6	2.029786	2.235885	2.242392	2.242518	2.24252
	1.7	2.24252	2.461889	2.468732	2.468864	2.468866
	1.8	2.468866	2.702189	2.709364	2.709501	2.709504
	1.9	2.709504	2.957457	2.964961	2.965104	2.965107
	2	2.965107				

setup:
[M2]
first run:
[A2]
first run:
further runs: [A1A1A1]

these -->	differences
may appear in (iii)	and ratios:

[M1]
[subtotal 8]
(iii) The rate of convergence (see ratio of differences) is the same for both methods.
[E1]
[E1]
[E1]
[E1]
[subtotal 4]
[TOTAL 24]

4 (i)	7.1	6	5	4	1
	6	5.1	4	3	1
	5	4	3.1	2	1
	4	3	2	1.1	1
		0.029577	-0.22535	-0.38028	0.15493
		-0.22535	-0.42113	-0.8169	0.295775
		-0.38028	-0.8169	-1.15352	0.43662
		-0.28889	-0.47	0.188889	
			0.062963	-0.13333	0.037037
				-0.23577	0.078205

$x 1=0.320827$
$x 2=0.103317$
$x 3=-0.11419$
$x 4=-0.3317$
product of pivots: $\quad-0.18390$ magnitude of determinant: 0.18390
[M1A1]
(ii)

7.01	6	5
6	5.01	4
5	4	3.01
4	3	2
	-0.12552	-0.2796
	-0.2796	-0.55633
	-0.42368	-0.85307
		-0.02687
		0.006633
product of pivots:		-0.00198
$\alpha=$		(B) $\beta=$
0.01	(A) $\beta=0$	0.1
x1	0.302	0.600
x2	0.100	-0.300
x3	-0.101	-0.200
x4	-0.303	-0.099

```
x1 = 0.599796
        \square
                                    <
                            *
        x2 = -0.2999
        x3 = -0.1996
    x4 = -0.09929
```

 1.01
 1
1
1
$\begin{array}{r}2 \\ 1.01 \\ \hline\end{array}$
$\beta=0.01$
1

8	0.135521
	0.279601

1.27245	0.42368

0.001984
[M1A1]
solutions:
[M1A1]
[M1A1]

Very large changes in the solution for small change in one coefficient.
[E1E1]
[E1E1]
[subtotal 10]
[TOTAL 24]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

